Социальная изоляция: связь с заболеваниями сердечно-сосудистой системы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Социальные и демографические изменения последних десятилетий привели к увеличению распространенности одиночества и социальной изоляции в современном обществе. Социальная изоляция и одиночество – распространенные, но недооцененные факторы, определяющие здоровье, в первую очередь сердечно-сосудистой системы. При этом, как показали результаты различных исследований, воздействие одиночества и социальной изоляции приводит к нарушению функций и других систем. Социальная изоляция и одиночество сопровождаются развитием окислительного стресса в структурах мозга, который активирует нейроны префронтальной коры и лимбических областей, что сопровождается длительной повышенной продукцией глюкокортикоидных гормонов, со временем приводящей к резистентности к глюкокортикоидам. При этом также происходит активация симпатической нервной системы, которая на фоне резистентности к глюкокортикоидам вызывает стойкое повышение артериального давления и развитие провоспалительного состояния. В результате у одиноких людей наблюдается повышенное периферическое сосудистое сопротивление, повышенное артериальное давление, быстрее развиваются атеросклеротические изменения в артериях. Хотя молекулярные механизмы, ответственные за повышенный сердечно-сосудистый риск у одиноких и социально изолированных людей, недостаточно изучены, доказано, что эти изменения способствуют увеличению риска развития сердечно-сосудистых заболеваний. Применяемые в настоящее время меры по борьбе с одиночеством и социальной изоляцией способны уменьшить их негативное влияние на здоровье, однако с учетом ограниченного применения их эффективность для общества в целом недостаточна. Для лучшего понимания механизмов негативного влияния одиночества и социальной изоляции на здоровье сердечно-сосудистой системы необходимы более глубокие исследования и разработки более эффективных методов вмешательств.

Полный текст

Доступ закрыт

Об авторах

Г. И. Лобов

ФГБУН Институт физиологии им. И.П. Павлова РАН

Автор, ответственный за переписку.
Email: LobovGI@infran.ru
Россия, 199034, Санкт-Петербург

Список литературы

  1. Крупина Н.А., Ширенова С.Д. Нарушения когнитивных функций при длительной социальной изоляции: результаты исследований на людях и экспериментов на животных // 2023. Т. 54. № 3. С. 18–35. https://doi.org/10.31857/S0301179823040045
  2. Bai Y., Jabbari B., Ye S. et al. Regional expression of NAD(P)H oxidase and superoxide dismutase in the brain of rats with neurogenic hypertension // Am. J. Nephrol. 2009. V. 29. № 5. P. 483–492. https://doi.org/10.1159/000178817
  3. Benjamin D.G., Gummanur P. Loneliness – Cancer of the Mind // Indian J. Palliat Care. 2023. № 2. P. 212–216. https://doi.org/10.25259/IJPC_200_2022
  4. Beutel M.E., Klein E.M., Brahler E. et al. Loneliness in the general population: prevalence, determinants and relations to mental health // BMC Psychiatry. 2017. V. 17. № 1. 97. https://doi.org/ 10.1186/s12888-017-1262-x
  5. Black C.N., Bot M., Revesz D. et al.The association between three major physiological stress systems and oxidative DNA and lipid damage // Psychoneuroendocrinology. 2017. V. 80. P. 56–66. https://doi.org/10.1016/j.psyneuen.2017.03.003
  6. Borski R.J. Nongenomic membrane actions of glucocorticoids in vertebrates // Trends Endocrinol. Metab. 2000. V. 10. P. 427–436. https://doi.org/10.1016/s1043-2760(00)00325-8
  7. Bruce M.L. Depression and disability in late life: directions for future research // Am. J. Geriatr. Psychiatry. 2001. Spring. V. 9. № 2. P. 102-12.
  8. Bu F., Steptoe A., Fancourt D. Who is lonely in lockdown? Cross-cohort analyses of predictors of loneliness before and during the COVID-19 pandemic // Public Health. 2020. V. 186. P. 31–34. https://doi.org/10.1016/j.puhe.2020.06.036
  9. Cacioppo J.T., Hawkley L.C., Crawford L.E. et al. Loneliness and health: potential mechanisms// Psychosom Med. 2002. V. 64. P. 407–417. https://doi.org/10.1097/00006842-200205000-00005
  10. Cacioppo J.T., Hawkley L.C. Perceived social isolation and cognition // Trends Cogn. Sci. 2009. V. 10. P. 447-454. https://doi.org/10.1016/j.tics.2009.06.005
  11. Cacioppo J.T., Cacioppo S. Social Relationships and Health: The Toxic Effects of Perceived Social Isolation // Soc. Personal Psychol. Compass. 2014. V. 8. № 2. P. 58–72. https://doi.org/10.1111/spc3.12087
  12. Cacioppo S. Capitanio J.P. Cacioppo J.T. Toward a neurology of loneliness // Psychol Bull. 2014. V. 140. № 6. P. 1464–1504. https://doi.org/10.1037/a0037618
  13. Cacioppo J.T., Cacioppo S., Cole S.W. et al. Loneliness across phylogeny and a call for comparative studies and animal models // Perspect Psychol. Sci. 2015. V. 10. P. 202–212. https://doi.org/10.1177/1745691614564876
  14. Cacioppo J.T., Cacioppo S., Capitanio J.P., Cole S.W. The neuroendocrinology of social isolation // Annu. Rev. Psychol. 2015. V. 66. P. 733–767. https://doi.org/10.1146/annurev-psych-010814-015240
  15. Cacioppo S., Grippo A.J., London S. et al. Loneliness: clinical import and interventions // Perspect Psychol Sci. 2015. № 2. P. 238–249. https://doi.org/10.1177/1745691615570616
  16. Cacioppo J.T., Cacioppo S. The growing problem of loneliness // Lancet. 2018. V. 391. № 10119. 426. https://doi.org/10.1016/S0140-6736(18)30142-9.
  17. Campaign to End Loneliness. About the Campaign. https://www.campaigntoendloneliness.org/about-the-campaign.
  18. Campese V.M., Ye S., Zhong H., Yanamadala V. et al. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity // Am. J. Physiol. Heart Circ. Physiol. 2004. V. 287. № 2. H695–H703. https://doi.org/10.1152/ajpheart.00619.2003
  19. Cené C.W., Loehr L., Lin F.C. et al. Social isolation, vital exhaustion, and incident heart failure: findings from the atherosclerosis risk in communities study // Eur. J. Heart Fail. 2012. V. 14. № 7. P. 748–753. https://doi.org/10.1093/eurjhf/hfs064
  20. Cené C.W., Beckie T.M., Sims M. et al. Effects of objective and perceived social isolation on cardiovascular and brain health: a scientific statement from the American heart association // J. Am Heart Assoc. 2022. V. 11. № 16. e026493. https://doi.org/10.1161/JAHA.122.026493
  21. Coalition to End Social Isolation & Loneliness. https://www.endsocialisolation.org/
  22. Colaianna M., Schiavone S., Zotti M. et al. Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress // Antioxidants Redox Signal. 2013. V. 18. № 12. P. 1385–1399. https://doi.org/10.1089/ars.2012.4569
  23. Cole S.W., Hawkley L.C., Arevalo J.M. et al. Social regulation of gene expression in human leukocytes // Genome Biol. 2007. V. 8. № 9. R189. https://doi.org/10.1186/gb-2007-8-9-r189
  24. Cole S.W., Capitanio J.P., Chun K. et al. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 15142–15147. https://doi.org/10.1073/pnas.1514249112
  25. Collins C.C., Benedict J. Evaluation of a community-based health promotion program for the elderly: lessons from seniors can // Am. J. Health Promotion. 2006 V. 21. № 1. P. 45–48. https://doi.org/10.4278/0890-1171-21.1.45
  26. Dankoski E.C., Agster K.L., Fox M. et al. Facilitation of serotonin signaling by SSRIs is attenuated by social isolation // Neuropsychopharmacology. 2014. V. 39. № 13. P. 2928–2837. https://doi.org/10.1038/npp.2014.162
  27. Di Angelantonio E., Bhupathiraju Sh.N., Wormser D. et al. Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents // Lancet. 2016. V. 388. P. 776–786. https://doi.org/10.1016/S0140-6736(16)30175-1
  28. Doane L.D. and Adam E.K. Loneliness and cortisol: momentary, day-to-day, and trait associations // Psychoneuroendocrinology. 2010. V. 35: № 3. P. 430–441. https://doi.org/10.1016/j.psyneuen.2009.08.005
  29. Dunfield KA. A construct divided: prosocial behavior as helping, sharing, and comforting subtypes // Front. Psychol. 2014. V. 5. P. 958. https://doi.org/10.3389/fpsyg.2014.00958
  30. Golaszewski N.M., LaCroix A.Z., Godino J.G. et al. Evaluation of Social Isolation, Loneliness, and Cardiovascular Disease Among Older Women in the US // JAMA Netw. Open. 2022. V. 5. № 2. e2146461. https://doi.org/10.1001/jamanetworkopen.2021.46461
  31. Filipovic D., Todorovic N., Bernardi R.E., Gass P. Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms // Brain Struct. Funct. 2017. V. 222. № 1. P. 1–20. https://doi.org/10.1007/s00429-016-1218-9
  32. Fokkema T., De Jong Gierveld J., Dykstra P.A. Cross-national differences in older adult loneliness // J. Psychol. 2012. V. 146. P. 201–228. https://doi.org/10.1080/00223980.2011.631612
  33. Forstermann U.., Xia N., Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis // Circ. Res. 2017. V. 120. № 4. P. 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326
  34. Fry P.S., Debats D.L. Self-efficacy beliefs as predictors of loneliness and psychological distress in older adults // Int. J. Aging. Hum. Dev. 2016. V. 55. № 3. P. 233–269. https://doi.org/10.2190/kbvp-l2te-2ery-bh26
  35. Gavrilovic L., Dronjak S. Activation of rat pituitary-adrenocortical and sympatho-adrenomedullary system in response to different stressors // Neuro Endocrinol. Lett. 2005. V. 26. № 5. P. 515–520.
  36. Gerst-Emerson K., Jayawardhana J. Loneliness as a public health issue: the impact of loneliness on health care utilization among older adults // Am. J. Public Health. 2015. V. 105. № 5. P. 1013–1019. https://doi.org/10.2105/AJPH.2014.302427
  37. Glozier N., Tofler G.H., Colquhoun D.M. et al. Psychosocial risk factors for coronary heart disease // Med. J. Aust. 2013. V. 199. P. 179–180. https://doi.org/10.5694/mja13.10440
  38. Govindan R.M., Behen M.E., Helder E. et al. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS) // Cereb Cortex. 2010. V. 20. P. 561–569. https://doi.org/10.1093/cercor/bhp122
  39. Hajek A., König H.H. Social isolation and loneliness of older adults in times of the COVID-19 pandemic: can use of online social media sites and video chats assist in mitigating social isolation and loneliness? // Gerontology. 2021. V. 67. № 1. P. 121–124. https://doi.org/10.1159/000512793
  40. Hanke M.L., Powell N.D., Stiner L.M. et al. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress // Brain Behav. Immun. 2012. V. 26. № 7. P. 1150–1159. https://doi.org/10.1016/j.bbi.2012.07.011
  41. Hänsel A., Hong S., Cámara R.J.A, von Könel R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress // Neurosci. Biobehav. Rev. 2010. V. 35. № 1. P. 115–121. https://doi.org/10.1016/j.neubiorev.2009.12.012
  42. Havranek E.P., Mujahid M.S., Barr D.A. et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association // Circulation. 2015. V. 132. P. 873–898. https://doi.org/10.1161/CIR.0000000000000228
  43. Hawkley L.C., Burleson M.H., Berntson G.G., and Cacioppo J.T. Loneliness in everyday life: cardiovascular activity, psychosocial context, and health behaviors // J. Pers. Soc. Psychol. 2003. V. 85. № 1. P. 105–120. https://doi.org/10.1037/0022-3514.85.1.105
  44. Hawkley L.C., Masi C.M., Berry J.D., Cacioppo J.T. Loneliness is a unique predictor of age-related differences in systolic blood pressure // Psychol. Aging. 2006. V. 21. № 1. P. 152–164. https://doi.org/10.1037/0882-7974.21.1.152
  45. Hawkley L.C., Cacioppo J.T. Loneliness matters: A theoretical and empirical review of consequences and mechanisms // Ann. Behav. Med. 2010. V. 40. № 2. P. 218–227. https://doi.org/10.1007/s12160-010-9210-8
  46. Hawkley L.C., Hughes M.E., Waite L. et al. From social structure factors to perceptions of relationship quality and loneliness: The Chicago health, aging, and social relations study // J. Gerontol. B. Psychol. Sci. Soc. Sci. 2008. V. 63. № 6. P. S375–S384. https://doi.org/10.1093/geronb/63.6.s375
  47. Hawkley L.C., Thisted R.A., Masi C.M., Cacioppo J.T. L oneliness predicts increased blood pressure: 5-year cross-lagged analyses in middle-aged and older adults // Psychol. Aging. 2010. V.25. № 1. P. 132–141. https://doi.org/10.1037/a0017805
  48. Hawkley L.C., Cole S.W., Capitanio J.P. et al. Effects of social isolation on glucocorticoid regulation in social mammals// Hormю Behav. 2012. V. 62. № 3. P. 314–323. https://doi.org/10.1016/j.yhbeh.2012.05.011
  49. Heidt T., Sager H.B., Courties G. et al. Chronic variable stress activates hematopoietic stem cells // Natю Med. 2014. V. 20. № 7. P. 754–758. https://doi.org/10.1038/nm.3589
  50. Hodgson S., Watts I., Fraser S. et al. Loneliness, social isolation, cardiovascular disease and mortality: a synthesis of the literature and conceptual framework // J. R. Soc. Med. 2020. V. 113. № 5. P. 185–192. https://doi.org/10.1177/0141076820918236
  51. Hoffner C.A., Bond B.J. Parasocial relationships, social media, & well-being // Curr. Opin. Psychol. 2022. V. 45. 101306. https://doi.org/10.1016/j.copsyc.2022.101306
  52. Holt-Lunstad J., Smith T.B. Loneliness and social isolation as risk factors for CVD: implications for evidence-based patient care and scientific inquiry // Heart. 2016. V. 102. № 13. P. 987–989. https://doi.org/10.1136/heartjnl-2015-309242
  53. Holt-Lunstad J., Smith T.B., Baker M. et al. Loneliness and social isolation as risk factors for mortality: a meta-analytic review // Perspect Psychol. Sci. 2015. V. 10. № 2. P. 227–237. https://doi.org/10.1177/1745691614568352
  54. Hostinar C.E., Sullivan R.M., Gunnar M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development // Psychol. Bull. 2014. V. 140. № 1. P. 256–282. https://doi.org/10.1037/a0032671
  55. House J.S.., Landis K.R., Umberson D. Social relationships and health // Science (New York, N.Y.). 1988. V. 241. № 4865. P. 540–545. https://doi.org/10.1126/science.3399889
  56. Jensen K. Prosociality // Curr Biol. 2016. V. 26. № 16. P. R748–R752. https://doi.org/10.1016/j.cub.2016.07.025
  57. Kaushal N., Nair D., Gozal D., Ramesh V. Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice // Brain Res. 2012. № 1454. P. 65–79. https://doi.org/10.1016/j.brainres.2012.03.019
  58. Kaplan J.R., Manuck S.B., Clarkson T.B. et al. Social stress and atherosclerosis in normocholesterolemic monkeys // Science. 1983. V. 220. № 4598. P. 733–735. https://doi.org/10.1126/science.6836311
  59. Koba S. Angiotensin II, oxidative stress, and sympathetic nervous system hyperactivity in heart failure // Yonago Acta Med. 2018. V. 61. № 2. P. 103–109. https://doi.org/10.33160/yam.2018.06.002
  60. Krieger S.S., Zwart S.R., Mehta S. et al. Alterations in Saliva and Plasma Cytokine Concentrations During Long-Duration Spaceflight // Front. Immunol. 2021. V. 12. 725748. https://doi.org/10.3389/fimmu.2021.725748
  61. Kross E., Verduyn P., Demiralp E. et al. Facebook use predicts declines in subjective well-being in young adults // PloS One. 2013. V. 8. e69841. https://doi.org/10.1371/journal.pone.0069841
  62. Lahey B.B. Public health significance of neuroticism // Am. Psychol. 2009. V. 64. № 4. P. 241–256. https://doi.org/10.1037/a0015309
  63. Landeiro F., Barrows P., Nuttall Musson E. et al. Reducing social isolation and loneliness in older people: a systematic review protocol // BMJ Open. 2016. V. 7. № 5. P. e013778. https://doi.org/10.1136/bmjopen-2016-013778
  64. Leigh-Hunt N., Bagguley D., Bash K. et al. An overview of systematic reviews on the public health consequences of social isolation and loneliness // Publ. Health. 2017. V. 152. P. 157–171. https://doi.org/10.1016/j.puhe.2017.07.035
  65. Li H., Horke S., Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis // Atherosclerosis. 2014. V. 237. № 1. P. 208–219. https://doi.org/10.1016/j.atherosclerosis.2014.09.001
  66. Li H. The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness // Redox Biol. 2020. V. 37. 101585. https://doi.org/10.1016/j.redox.2020.101585
  67. Lim M.H., Manera K.E., Owen K.B. et al. The prevalence of chronic and episodic loneliness and social isolation from a longitudinal survey // Sci. Rep. 2023. V. 13. № 1. 12453. https://doi.org/10.1038/s41598-023-39289-x
  68. Liu Y., Mladinov D., Pietrusz J.L. et al. Glucocorticoid response elements and 11 beta-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression// Cardiovasc. Res. 2009. V. 81. № 1. P. 140–147. https://doi.org/10.1093/cvr/cvn231
  69. Lutgendorf S.K., DeGeest K., Dahmoush L. et al. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients // Brain Behav. Immun. 2011 V. 25. № 2. P. 250–255. https://doi.org/10.1016/j.bbi.2010.10.012
  70. Mann F., Bone J.K., Lloyd-EvansB. et al. A life less lonely: the state of the art in interventions to reduce loneliness in people with mental health problems // Soc. Psychiatry Psychiatr. Epidemiol. 2017. V. 52. № 6. P. 627–638. https://doi.org/10.1007/s00127-017-1392-y
  71. Masi C.M., Chen H.Y., Hawkley L.C., and Cacioppo J.T. A meta-analysis of interventions to reduce loneliness // Pers. Soc. Psychol. Rev. 2011. V. 15. № 3. P. 219–266. https://doi.org/10.1177/1088868310377394
  72. Matthews K.A., Zhu S., Tucker D.C., Whooley M.A. Blood pressure reactivity to psychological stress and coronary calcification in the coronary artery risk development in young adults study // Hypertension. 2006. V. 47. № 3. P. 391–395. https://doi.org/10.1161/01.HYP.0000200713.44895.38
  73. McNeal N., Scotti M.A., Wardwell J. et al. Disruption of social bonds induces behavioral and physiological dysregulation in male and female prairie voles // Auton. Neurosci. 2014. V. 180. P. 9–16. https://doi.org/10.1016/j.autneu.2013.10.001
  74. Mehta M.A., Golembo N.I., Nosarti C. et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian adoptees study pilot // J. Child Psychol. Psychiatry. 2009. V. 50. P. 943–951. https://doi.org/10.1111/j.1469-7610.2009.02084.x
  75. Meyers P.H., Nice C.M. Jr. The epidemiology of loneliness // Arch. Environ Health. 1964. V. 8. P. 775–776. https://doi.org/10.1080/00039896.1964.10663756
  76. Mumtaz F., Khan M.I., Zubair M., Dehpour A.R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review // Biomed. Pharmacother. 2018. V. 105. P. 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086
  77. Naik E., Dixit V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production // J. Exp. Med. 2011. V. 208. № 3. P. 417–420. https://doi.org/10.1084/jem.20110367
  78. Ohta K.I., Suzuki S., Warita K. et al. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development // J. Neurochem. 2017. V. 141. P. 179–194. https://doi.org/10.1111/jnc.13977
  79. Olujoke A.F, McCorry N.K., Donnelly M. Loneliness and social isolation interventions for older adults: a scoping review of reviews // BMC Public Health. 2020. V. 20. № 1. 129. https://doi.org/10.1186/s12889-020-8251-6
  80. Ong A.D., Uchino B.N., Wethington E. Loneliness and health in older adults: a mini-review and synthesis // Gerontology. 2016. V. 62. P. 443–449. https://doi.org/10.1159/000441651
  81. Oscar G. Wakabayashi M., Sugiyama Y. et al. Loneliness and increased hazardous alcohol use: data from a nationwide internet survey with 1-year follow-up // Int. J. Environ Res. Public Health. 2022. V. 19. № 19. P. 12086. https://doi.org/10.3390/ijerph191912086
  82. Pace T.W., Hu F., Miller A.H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression // Brain Behav. Immun. 2007. V. 21. P. 9–19. https://doi.org/10.1016/j.bbi.2006.08.009
  83. Paredes J., Szeto A., Levine J.E. et al. Social experience influences hypothalamic oxytocin in the WHHL rabbit // Psychoneuroendocrinology. 2006. V. 31. P. 1062–1075. https://doi.org/10.1016/j.psyneuen.2006.06.007
  84. Perissinotto C.M., Stijacic Cenzer I., Covinsky K.E. Loneliness in older persons: a predictor of functional decline and death // Arch. Intern. Med. 2012. V. 172. № 14. P. 1078–1083. https://doi.org/10.1001/archinternmed.2012.1993
  85. Powell N.D., Sloan E.K., Bailey M.T. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 41. P. 16574–16579. https://doi.org/10.1073/pnas.1310655110
  86. Preece M.A., Dalley J.W., Theobald D.E.H. et al. Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study // Neuroscience. 2004. V. 123. P. 725–732. https://doi.org/10.1016/j.neuroscience.2003.10.008
  87. Peuler J.D., Scotti M.A., Phelps LE. E al. Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease // Physiol. Behav. 2012. V. 106. № 4. P. 476–484. https://doi.org/10.1016/j.physbeh.2012.03.019
  88. Powell N.D., Sloan E.K., Bailey M.T. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 4. 16574–16579. https://doi.org/10.1073/pnas.1310655110
  89. Prior N.H., Bentz E.J., Ophir A.G. Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior // Genes. Brain Behav. 2022. V. 21. № 3. e12781. https://doi.org/10.1111/gbb.12781
  90. Qualter P., Vanhalst J., Harris R. et al. Loneliness across the life span // Perspect. Psychol. Sci. 2015. V. 10. № 2. P. 250–264. https://doi.org/10.1177/17456916155689
  91. Rodriguez J.M., Monsalves-Alvarez M., Henriquez S., Llanos M.N., Troncoso R. Glucocorticoid resistance in chronic diseases // Steroids. 2016. V. 115. P. 182–192. https://doi.org/10.1016/j.steroids.2016.09.010
  92. Roth G.A., Mensah G.A., Johnson C.O. et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 Study. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group // J. Am. Coll. Cardiol. 2020. V. 76. № 25. P. 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
  93. Ruiz M.C., Appleton P.R., Duda J.L. et al. Social environmental antecedents of athletes’ emotions // Int. J. Environ Res. Public Health. 2021. V. 18. № 9. P. 4997. https://doi.org/10.3390/ijerph18094997
  94. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei // Clin. Exp. Pharmacol. Physiol. 2005. V. 32. № 5–6. P. 450–456. https://doi.org/10.1111/j.1440-1681.2005.04210.x
  95. Schafer S.C., Wallerath T., Closs E.I. et al. Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles // Am. J. Physiol. Heart Circ. Physiol. 2005. V. 288. № 1. H436–H444. https://doi.org/10.1152/ajpheart.00587.2004
  96. Sharma T., Padala P.R., Mehta J.L. Loneliness and social isolation: determinants of cardiovascular outcomes // Curr. Cardiol. Rev. 2021. V. 17. № 6. e051121190873. https://doi.org/10.2174/1573403X17666210129101845
  97. Schiavone S., Sorce S., Dubois-Dauphin M. et al. Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats // Biol. Psychiatr. 2009. V. 66. № 4. P. 384–392. https://doi.org/10.1016/j.biopsych.2009.04.033
  98. Schiavone S., Jaquet V., Trabace L., Krause K.H. Severe life stress and oxidative stress in the brain: from animal models to human pathology // Antioxidants Redox Signal. 2013. V. 18. № 12. P. 1475–1490. https://doi.org/10.1089/ars.2012.4720
  99. Schraml E., Quan P., Stelzer I., Fuchs R. et al. Norepinephrine treatment and aging lead to systemic and intracellular oxidative stress in rats // Exp. Gerontol. 2007. V. 42. № 11. P. 1072– https://doi.org/1078. 10.1016/j.exger.2007.08.003
  100. Selye H. Stress and the General Adaptation Syndrome // Br. Med. J. 1950. V. 1. № 4667. P.1383–1392. https://doi.org/10.1136/bmj.1.4667.1383
  101. Siegrist J., Sies H. Disturbed redox homeostasis in oxidative distress: a molecular link from chronic psychosocial work stress to coronary heart disease? // Circ. Res. 2017. V. 121. № 2. P. 103–105. https://doi.org/10.1161/CIRCRESAHA.117.311182
  102. Silverman M. N., Esther M. S. Glucocorticoid regulation of inflammation and its behavioral and metabolic correlates: from HPA axis to glucocorticoid receptor dysfunction // Ann. NY Acad. Sci. 2012. V. 1261. P. 55–63. https://doi.org/10.1111/j.1749-6632.2012.06633.x
  103. Siuda D., Tobias S., Rus A., Xia N., Forstermann U., Li H. Dexamethasone upregulates Nox1 expression in vascular smooth muscle cells // Pharmacology. 2014. V. 94. № 1–2. P. 13–20. https://doi.org/10.1159/000365932
  104. Sloan E.K., Capitanio J.P., Tarara R.P. et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis // J. Neurosci. 2007. V. 27. № 33. P. 8857–8865. https://doi.org/10.1523/JNEUROSCI.1247-07.2007
  105. Sloan E.K., Capitanio J.P., Tarara R.P., Cole S.W. Social temperament and lymph node innervation // Brain Behav. Immun. 2008. V. 22. P. 717–726. https://doi.org/10.1016/j.bbi.2007.10.010
  106. Sloan E.K., Capitanio J.P., Cole S.W. Stress-induced remodeling of lymphoid innervation // Brain Behav. Immun. 2008. V. 22. P. 15–21. https://doi.org/10.1016/j.bbi.2007.06.011
  107. Smith A.S., Birnie A.K., French J.A. Social isolation affects partner-directed social behavior and cortisol during pair formation in marmosets, Callithrix geoffroyi // Physiol. Behav. 2011. V. 104. № 5. P. 955–961. https://doi.org/10.1016/j.physbeh.2011.06.014
  108. Smith K.J., Gavey S., Riddell N.E., Kontari P., Victor C. The association between loneliness, social isolation and inflammation: a systematic review and meta-analysis // Neurosci. Biobehav. Rev. 2020. V. 112. P. 519–541. https://doi.org/10.1016/j.neubiorev.2020.02.002
  109. Surkalim D.L., Luo M., Eres R. et al. The prevalence of loneliness across 113 countries: systematic review and meta-analysis // BMJ. 2022. V. 376. e067068. https://doi.org/10.1136/bmj-2021-067068
  110. Thayer J.F., Lane R.D. A Model of Neurovisceral Integration in Emotion Regulation and Dysregulation // J. Affect. Disord. 2000. V. 61. P. 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4
  111. Treiber F.A., Kamarck T., Schneiderman N., Sheffield D., Kapuku G., Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states // Psychosom. Med. 2003. V. 65. № 1. P. 46–62. https://doi.org/10.1097/00006842-200301000-00007
  112. VanderWeele T.J. Hawkley L.C. Thisted R.A. Cacioppo J.T. A marginal structural model analysis for loneliness: Implications for intervention trials and clinical practice // J. Clin. Cons. Psychol. 2011. V. 79. № 2. P. 225–235. https://doi.org/10.1037/a0022610
  113. Valtorta N., Hanratty B. Loneliness, isolation and the health of older adults: do we need a new research agenda? // J. R Soc Med Suppl. 2012. V. 105. № 12. P. 518–522. https://doi.org/10.1258/jrsm.2012.120128
  114. Valtorta N.K., Kanaan M., Gilbody S. et al. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies // Heart. 2016. V. 102. № 13. P. 1009–1016. https://doi.org/10.1136/heartjnl-2015-308790
  115. VanTieghem M., Korom M., Flannery J. et al. Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity // Dev. Cogn. Neurosci. 2021. V. 48. 100916. https://doi.org/10.1016/j.dcn.2021.100916
  116. Victor C.R., Yang K. The prevalence of loneliness among adults: A case study of the United Kingdom // J. Psychol. 2012. V. 146. P. 85–104. https://doi.org/10.1080/00223980.2011.613875
  117. Wang X.R., Yang J.W., Ji C.S. et al. Inhibition of NADPH oxidase-dependent oxidative stress in the rostral ventrolateral medulla mediates the antihypertensive effects of acupuncture in spontaneously hypertensive rats // Hypertension. 2018. V. 71. № 2. P. 356–365. https://doi.org/10.1161/HYPERTENSIONAHA.117.09759
  118. Wenzel P., Knorr M., Kossmann S. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction // Circulation. 2011. V. 124. № 12. P. 1370–1381. https://doi.org/10.1161/CIRCULATIONAHA.111.034470
  119. White C.N., VanderDrift L.E., Heffernan K.S. Social isolation, cognitive decline, and cardiovascular disease risk // Curr. Opin. Psychol. 2015. V. 5. P. 18–23.
  120. Williams R.B., Barefoot J.C., Califf R. et al. Prognostic importance of social and economic resources among medically treated patients with angiographically documented coronary artery disease // JAMA. 1992. V. 267. P. 520–524.
  121. World Health Organization (WHO). 2020. Fact sheets: Cardiovascular diseases (CVDs). http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  122. Xia N., Li H. Loneliness, Social Isolation, and Cardiovascular Health // Antioxid. Redox Signal. 2018. V 28. № 9. P. 837–851. https://doi.org/10.1089/ars.2017.7312
  123. Yang S., Zhang L. Glucocorticoids and vascular reactivity // Curr. Vas.c Pharmacol. 2004. V. 2. № 1. P. 1–12. https://doi.org/10.2174/1570161043476483
  124. Yu Y., Wei S.G., Zhang Z.H. et al. Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? // Hypertension. 2008. V. 51. № 3. P. 727–733. https://doi.org/10.1161/HYPERTENSIONAHA.107.099796

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема, иллюстрирующая связь одиночества и социальной изоляции с сердечно-сосудистыми заболеваниями. Одиночество и СИ приводят к усилению вегетативной реакции на стресс и гиперактивности симпатической нервной системы, что сопровождается повышением общего периферического сопротивления (ОПС), развитием артериальной гипертензии и ишемической болезни сердца (ИБС). СИ связана с более высоким уровнем ГК в состоянии покоя из-за чрезмерной активации ГГАКС, что приводит к резистентности к ГК и хроническому воспалению. Высокая концентрация ГК усиливает сосудосуживающее действие катехоламинов и снижает синтез NO эндотелиальными клетками. СИ активирует ренин-ангиотензин-альдостероновую систему, которая также повышает ОПС и приводит к эндотелиальной дисфункции. СИ также увеличивает число циркулирующих естественных клеток-киллеров (NK), фибриногена и других медиаторов воспаления, что ускоряет развитие атеросклероза. ГГАКС – гипоталамо-гипофизарно-адренокортикальная система, ГК – глюкокортикодные гормоны, NO – оксид азота, IL-1β – интерлейкин -1β, IL-6 – интерлейкин 6, -TNFα – фактор некроза опухоли α, СНС – симпатическая нервная система, ОПС – общее периферическое сопротивление, РААС – ренин-ангиотензин-альдостероновая система, АД – артериальное давление, ИБС – ишемическая болезнь сердца.

3. Рис. 2. Двунаправленная связь между ГГАКС и иммунной системой. Глюкокортикоиды оказывают негативное воздействие на иммунную систему, подавляя дальнейший синтез и высвобождение провоспалительных цитокинов (пунктирная красная линия). Глюкокортикоиды регулируют собственную продукцию посредством отрицательной обратной связи: через кортикотропин-рилизинг-гормон (КРГ) в паравентрикулярном ядре (PVN) гипоталамуса и АКТГ в передней доле гипофиза (пунктирная красная линия). Провоспалительные цитокины (TNF, IL-1 и IL-6) стимулируют высвобождение глюкокортикоидов, действуя на всех трех уровнях ГГАКС (сплошные синие линии).


© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах