Blood physiology. erythrocyte based on the plenary lecture at the XXIV congress of the physiological society named after. I. P. Pavlova…

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Human red blood cells have a complex system for regulating cell volume and deformability. This is absolutely necessary to ensure good blood rheology both in large vessels and in the capillary network. The review examines the features of the erythrocyte structure that provide good gas transport functions and excellent blood rheology, despite the fact that erythrocytes occupy 40% of the blood volume. Providing these properties requires the participation of a number of metabolic systems, which allows the red blood cell to work effectively in the bloodstream for 100–120 days without the synthesis of new proteins.

Full Text

Restricted Access

About the authors

F. I. Ataullakhanov

Center for Theoretical Problems of Physical-Chemical Pharmacology, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Academy of Sciences; Moscow Institute of Physics and Technology

Author for correspondence.
Email: ataullakhanov.fazly@gmail.com
Russian Federation, 109029, Moscow; 117997, Moscow; 141710, Dolgoprudny

L. Koleva

Center for Theoretical Problems of Physical-Chemical Pharmacology, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Academy of Sciences

Email: ataullakhanov.fazly@gmail.com
Russian Federation, 109029, Moscow; 117997, Moscow

S. S. Shakhidzhanov

Center for Theoretical Problems of Physical-Chemical Pharmacology, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Academy of Sciences

Email: ataullakhanov.fazly@gmail.com
Russian Federation, 109029, Moscow; 117997, Moscow

References

  1. Атауллаханов Ф.И. Регуляция метаболизма в эритроцитах. Дис. ... докт. физ.-мат. наук. М.: НИИ по БИХС, 1982. 296 с.
  2. Antonini E., Brunori M. Hemoglobin and myoglobin and their reactions with ligands // Frontiers in Biology. Amsterdam: North-Holland Pub. Co, 1971. V. 21. P. 436.
  3. Ataullakhanov F.I., Korunova N.O., Spiridonov I.S. et. al. How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology // Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2009. V. 3. № 2. P. 101.
  4. Ataullakhanov F.I., Martinov M.V., Shi Q., Vitvitsky V.M. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization // PLoS ONE. 2022. V. 17. P. e0272675. https://doi.org/10.1371/journal.pone.0272675
  5. Berg J.M., Tymoczko J.L., Gatto G.J. Jr., Stryer L. Hemoglobin: portrait of a protein in action // Biochemistry, 8th ed. New York: W.H. Freeman and Co, 2015. P. 191.
  6. Bohr C., Hasselbalch K., Krogh A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skandinavisches // Arch. Physio. 1904. V. 16. P. 402.
  7. Cooling L. The RBC as a physiological object / Editor(s): McManus L.M., Mitchell R.N. Pathobiol. Hum. Dis. Academic Press: 2014. P. 3049.
  8. Corrons J.L.V., Casafont L.B., Frasnedo E.F. Concise review: how are red blood cells born, how do they live and die? // Ann. Hematol. Oncol. 2021. V. 8. P. 1.
  9. Crichton R.R. Iron: essential for almost all life / Editor(s): Crichton R.R. Biological Inorganic Chemistry (Second Edition), Elsevier, 2012. P. 247. https://doi.org/10.1016/B978-0-444-53782-9.00013-9
  10. D’Alessandro A., Anastasiadi A.T., Tzounakas V.L., et. al. Red blood cell metabolism in vivo and in vitro // Metabolites. 2023. V. 27. P. 793. https://doi.org/10.3390/metabo13070793
  11. Doyle J., Cooper J.S. Physiology, carbon dioxide transport. Treasure Island (FL): StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK532988/
  12. Feher J. Oxygen and carbon dioxide transport / Editor(s): Feher J. Quantitative Human Physiology. New York: Academic Press, 2012. P. 586.
  13. Gallet R, Violle C, Fromin N. et. al. The evolution of bacterial cell size: the internal diffusion-constraint hypothesis // ISME J. 2017. V. 11. P. 1559. https://doi.org/10.1038/ismej.2017.35
  14. Gautier E.F., Leduc M., Cochet S. et. al. Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes // Blood Adv. 2018. V. 23. P. 2646. https://doi.org/10.1182/bloodadvances.2018023515
  15. Hopkins E., Sanvictores T., Sharma S. Physiology, acid base balance. Treasure Island (FL): StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK507807/
  16. Jakobsson E. Interactions of cell volume, membrane potential, and membrane transport parameters // Am. J. Physiol. 1980. V. 238. P. 196.
  17. Kaestner L., Bogdanova A., Egee S. Calcium channels and calcium-regulated channels in human red blood cells // Adv Exp Med Biol. 2020. V. 1131. P. 625. https://doi.org/10.1007/978-3-030-12457-1_25
  18. Kalyagina N.V., Martinov M.V., Ataullakhanov F.I. mathematical analysis of human red blood cell volume regulation with regard to the elastic effect of the erythrocyte shell on metabolic processes // Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2013. V. 7. № 2. P. 122.
  19. Kilmartin J.V. Interaction of haemoglobin with protons, CO2 and 2,3-diphosphoglycerate // Br. Med. Bull. 1976. V. 32. P. 209.
  20. Koch A.L. What size should a bacterium be? A question of scale // Ann. Rev. Microbiol. 1996. V. 50. P. 317. https://doi.org/10.1146/annurev.micro.50.1.317
  21. Lux S.E. Anatomy of the red cell membrane skeleton: unanswered questions // Blood. 2016. V. 127. P. 187. https://doi.org/10.1182/blood-2014-12-512772
  22. Pittman R.N. Oxygen Transport // Regulation of tissue oxygenation. San Rafael (CA): Morgan & Claypool Life Sciences, 2011. https://www.ncbi.nlm.nih.gov/books/NBK54103
  23. Rhodes C.E., Denault D., Varacallo M. Physiology, oxygen transport. Treasure Island (FL): StatPearls Publishing. 2023. https://www.ncbi.nlm.nih.gov/books/NBK538336/
  24. Schwartz R.S., Conley C.L. Blood // Encyclopedia Britannica. 2023. https://www.britannica.com/science/blood-biochemistry
  25. Sharma S., Hashmi M.F. Partial pressure of oxygen. Treasure Island (FL): StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK493219/
  26. Svetina S. Red blood cell shape and deformability in the context of the functional evolution of its membrane structure // Cell. Mol. Biol. Lett. 2012. V. 17. P. 171.
  27. West J.B. Respiratory Physiology // Reference module in biomedical sciences. Elsevier, 2014. https://doi.org/10.1016/B978-0-12-801238-3.00214-2
  28. Wilson D.F., Matschinsky F.M. Metabolic homeostasis in life as we know it: its origin and thermodynamic basis // Front. Physiol. 2021. V. 12. P. 658997. https://doi.org/10.3389/fphys.2021.658997
  29. Windsor W.T., Philo J.S., Potschka M., Schuster T.M. Kinetics of oxygen binding and subunit assembly for the hemoglobin alpha subunit // Biophys. Chem. 1992. V. 43. P. 61. https://doi.org/10.1016/0301-4622(92)80042-4
  30. Young D.B. Control of cardiac output. San Rafael (CA): Morgan & Claypool Life Sciences, 2010. https://www.ncbi.nlm.nih.gov/books/NBK54473/
  31. Zhang Y., Xu Y., Zhang S. et. al. The regulation roles of Ca2+ in erythropoiesis: What have we learned? // Exp. Hematol. 2022. V. 106. P. 19.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Blood components.

Download (2MB)
3. Fig. 2. Red blood cells.

Download (832KB)
4. Fig. 3. Hemoglobin.

Download (1MB)
5. Fig. 4. The curve of oxygen binding to hemoglobin. The solid line is the curve of oxygen binding to hemoglobin. The dotted line is a hypothetical curve of oxygen binding to a protein having an affinity for oxygen such as hemoglobin has when binding the first oxygen molecule. The dotted line is the curve of oxygen binding to myoglobin.

Download (199KB)
6. Fig. 5. Regulation of hemoglobin cooperativeness. 2,3-bisphosphoglycerate (BFG). Solid lines are curves of oxygen binding to hemoglobin at different concentrations of 2,3-bisphosphoglycerate.

Download (79KB)
7. Fig. 6. Transport of carbon dioxide from tissues to lungs.

Download (134KB)
8. Fig. 7. Distribution of erythrocyte proteins by the number of copies in one erythrocyte (red curve). Proteins are ranked by the number of copies from the first one – hemoglobin, the number of copies of which is about 109 molecules, to proteins found in the erythrocyte in the form of several copies. Green shows similar results for reticulocytes, orange shows data from previous work on this topic.

Download (1006KB)
9. Fig. 8. Deformation of erythrocytes when passing through narrow capillaries.

Download (1MB)
10. Fig. 9. The main proteins providing regulation of erythrocyte volume and ion gradients created by these proteins on the erythrocyte membrane. First of all, this is the Na, K pump, which creates two counter gradients of monovalent cations, and the Ca2+ pump, which reduces the concentration of Ca2+ in the cytoplasm by 4 orders of magnitude, compared with plasma. Intracellular Ca2+ controls the conduction of Ca-activated K+ channels.

Download (1MB)
11. Fig. 10. Contribution to the regulation of the volume of erythrocyte pumps and channels.

Download (876KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies