Role of LIM-Kinase 1 in Memory Processes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

According to modern ideas, the basis of intellectual problems in neurological brain damage is active forgetting, regulated by Rac and Rho small GTPases-dependent signal stages of actin remodeling. The key enzyme of these cascades is LIM kinase 1 (LIMK1). Changes in limk1 gene expression lead to neurocognitive pathologies. Rapid screening and testing of targeted therapeutic agents modifying protein-protein interactions of GTPases and components of signaling cascades requires the development and validation of simple animal models. Such an opportunity is provided by Drosophila, the mutant strains of which allow you to identify the nodal moments of intersection of biochemical and neural networks, accompanying active forgetting.

Негізгі сөздер

Авторлар туралы

E. Nikitina

Pavlov Institute of Physiology, Russian Academy of Sciences; Herzen State Pedagogical University of Russia

Хат алмасуға жауапты Автор.
Email: 21074@mail.ru
Russia, 199034, Saint-Petersburg, ; Russia, 191186, Saint-Petersburg

E. Zalomaeva

Pavlov Institute of Physiology, Russian Academy of Sciences; Herzen State Pedagogical University of Russia

Хат алмасуға жауапты Автор.
Email: Zalomaeva.E@yandex.ru
Russia, 199034, Saint-Petersburg, ; Russia, 191186, Saint-Petersburg

A. Medvedeva

Pavlov Institute of Physiology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: avmed56@mail.ru
Russia, 199034, Saint-Petersburg,

A. Zhuravlev

Pavlov Institute of Physiology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: beneor@mail.ru
Russia, 199034, Saint-Petersburg,

E. Savvateeva-Popova

Pavlov Institute of Physiology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: esavvateeva@mail.ru
Russia, 199034, Saint-Petersburg,

Әдебиет тізімі

  1. Берлов Д.Н., Никитина Е.А. Функциональные ансамбли в мозге человека и животных // Физиология человека. 2021. Т. 47. № 5. С. 118. https://doi.org/10.31857/S0131164621050039
  2. Журавлев А.В., Никитина Е.А., Савватеева-Попова Е.В. Обучение и память у дрозофилы: физиолого-генетические основы // Успехи физиол. наук. 2015. Т. 46. № 1. С. 76.
  3. Заломаева Е.С., Фалина В.С., Медведева А.В., Никитина Е.А., Савватеева-Попова Е.В. Обучение и забывание у Drosophila melanogaster при полиморфизме по гену limk1 // Интегративная физиология. 2021. Т. 2. № 3. С. 318. https://doi.org/10.33910/2687-1270-2021-2-3-318-327
  4. Каминская А.Н., Медведева А.В. LIM-киназа 1 в регуляции когнитивных и локомоторных и функций Drosophila melanogaster // Экологическая генетика. 2013. Т. 11. № 3. С. 63.
  5. Каминская А.Н., Никитина Е.А., Герасименко М.С. и др. Обучение и формирование памяти в сопоставлении с распределением pCREB и белковых агрегатов в нейромышечных контактах у Drosophila melanogaster при полиморфизме limk1 // Генетика. 2015. Т. 51. № 6. С. 685. https://doi.org/10.7868/S0016675815060077
  6. Каминская А.Н., Никитина Е.А., Паялина Т.Л. и др. Влияние соотношения изоформ LIMK1 на поведение ухаживания Drosophila melanogaster: комплексный подход // Экологическая генетика. 2011. Т. 9. № 4. С. 3. https://doi.org/10.17816/ecogen943-14
  7. Ковалева Т.Ф., Максимова Н.С., Жуков И.Ю. и др. Кофилин: молекулярно-клеточные функции и роль в функционировании нервной системы // Нейрохимия. 2019. Т. 36. № 1. С. 14. https://doi.org/10.1134/S1027813319010126
  8. Лопатина Н.Г., Зачепило Т.Г., Чеснокова Е.Г., Савватеева-Попова Е.В. Поведенческие и молекулярные последствия дефицита эндогенных кинуренинов у медоносной пчелы (Apis mellifera L.) // Журн. высшей нервной деятельности им. И.П. Павлова. 2010. Т. 60. № 2. С. 229.
  9. Мамон Л.А., Бондаренко Л.В., Третьякова И.В. и др. Последствия клеточного стресса при нарушенном синтезе белков теплового шока у дрозофилы // Вестник СПбГУ. 1999. Сер. 3. Вып. 4. № 24. С. 94.
  10. Медведева А.В., Молотков Д.А., Никитина Е.А. и др. Регуляция генетических и цитогенетических процессов сигнальным каскадом ремоделирования актина: структура гена LIMK1, архитектура хромосом и способность к обучению спонтанных и мутантных вариантов локуса agnostic дрозофилы // Генетика. 2008. Т. 44. № 6. С. 669.
  11. Никитина Е.А., Каминская А.Н., Молотков Д.А., Попов А.В., Савватеева-Попова Е.В. Влияние теплового шока на обучение, формирование памяти и содержание LIMK1 в мозге самцов Drosophila melanogaster с измененной структурой гена limk1 // Журн. эволюционной биохимии и физиологии. 2014. Т. 50. № 2. С. 137.
  12. Никитина Е.А., Комарова А.В., Голубкова Е.В., Третьякова И.В., Мамон Л.А. Полудоминантное влияние мутации l(1)ts403 (sbr10) на нерасхождение половых хромосом в мейозе у самок Drosophila melanogaster при тепловом воздействии // Генетика. 2003. Т. 39. № 3. С. 341.
  13. Никитина Е.А., Медведева А.В., Герасименко М.С. и др. Ослабленное магнитное поле Земли: влияние на транскрипционную активность генома, обучение и память у Dr. melanogaster // Журн. высшей нервной деятельности им. И.П. Павлова. 2017. Т. 67. № 2. С. 246. https://doi.org/10.7868/S0044467717020101
  14. Никитина Е.А., Медведева А.В., Долгая Ю.Ф. и др. Участие GDNF, LIMK1 и белков теплового шока в формировании процеcсов обучения и памяти у дрозофилы // Журн. эволюционной биохимии и физиологии. 2012. Т. 48. № 6. С. 588.
  15. Никитина Е.А., Медведева А.В., Захаров Г.А., Савватеева-Попова Е.В. Локус agnostic дрозофилы: вовлеченность в становление когнитивных нарушений при синдроме Уильямса // Acta Naturae. 2014. Т. 6. № 2(21). С. 58.
  16. Никитина Е.А., Медведева А.В., Захаров Г.А., Савватеева-Попова Е.В. Синдром Уильямса как модель изучения пути гены–мозг–когнитивные функции: генетика и эпигенетика // Acta Naturae. 2014. Т. 6. № 1(20). С. 9.
  17. Савватеева-Попова Е.В., Никитина Е.А., Медведева А.В. От нейрогенетики к нейроэпигенетике // Генетика. 2015. Т. 51. № 5. С. 613. https://doi.org/10.7868/S0016675815050070
  18. Савватеева-Попова Е.В., Переслени А.И., Шарагина Л.М. и др. Особенности архитектуры Х-хромосомы, экспрессии LIM-киназы 1 и рекомбинации у мутантов дрозофилы локуса agnostic: модель синдрома Вильямса человека // Генетика. 2004. Т. 40. № 6. С. 749.
  19. Acevedo K., Moussi N., Li R., Soo P., Bernard O. LIM kinase 2 is widely expressed in all tissues // J. Histochem. Cytochem. 2006. V. 54. № 5. P. 487. https://doi.org/10.1369/jhc.5C6813.2006
  20. Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats // Anat. Rec. 1963. V. 145. P. 573. https://doi.org/10.1002/ar.1091450409
  21. Alvarez-Castelao B., Schuman E.M. The regulation of synaptic protein turnover // J. Biol. Chem. 2015. V. 290. №48. P. 28623. https://doi.org/10.1074/jbc.R115.657130
  22. Anderson C.A., Kovar D.R., Gardel M.L., Winkelman J.D. LIM domain proteins in cell mechanobiology // Cytoskeleton. 2021. V. 78. № 6. P. 303. https://doi.org/10.1002/cm.21677
  23. Asrar S., Meng Y., Zhou Z. et al. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1) // Neuropharmacology. 2009. V. 56. P. 73. https://doi.org/10.1016/j.neuropharm.2008.06.055
  24. Balaban P.M., Roshchin M., Timoshenko A.K. et al. Homolog of protein kinase Mζ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix // Front. Cell Neurosci. 2015. V. 9. Art. 222. https://doi.org/10.3389/fncel.2015.00222
  25. Ben Zablah Y., Zhang H., Gugustea R., Jia Z. LIM-Kinases in synaptic plasticity, memory, and brain diseases // Cells. 2021. V. 10. P. 2079. https://doi.org/10.3390/cells10082079
  26. Berabez R., Routier S., Bénédetti H., Plé K., Vallée B. LIM Kinases, promising but reluctant therapeutic targets: chemistry and preclinical validation in vivo // Cells. 2022. V. 11. P. 2090. https://doi.org/10.3390/cells11132090
  27. Bernard O., Ganiatsas S., Kannourakis G., Dringen R. Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons // Cell Growth Differ. 1994. V. 5. P. 1159.
  28. Blanpied T.A., Kerr J.M., Ehlers M.D. Structural plasticity with preserved topology in the postsynaptic protein network // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 34. P. 12587. https://doi.org/10.1073/pnas.0711669105
  29. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus // Nature. 1993. V. 361. P. 31. https://doi.org/10.1038/361031a0
  30. Bosch M, Hayashi Y. Structural plasticity of dendritic spines // Curr. Opin. Neurobiol. 2012. V. 22. № 3. P. 383. https://doi.org/10.1016/j.conb.2011.09.002
  31. Borodinova A.A., Zuzina A.B., Balaban P.M. Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity // Biochemistry (Mosc). 2017. V. 82. № 3. P. 243. https://doi.org/10.1134/S0006297917030026
  32. Borovac J., Bosch M., Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin binding proteins // Mol. Cell Neurosci. 2018. V. 91. P. 122. https://doi.org/10.1016/j.mcn.2018.07.001
  33. Burston S.G., Clarke A.R. Molecular chaperones: physical and mechanistic properties // Essay Biochem. 1995. V. 29. P. 125.
  34. Cervantes-Sandoval I., Chakraborty M., MacMullen C., Davis R.L. Scribble scaffolds a signalosome for active forgetting // Neuron. 2016. V. 90. № 6. P. 1230. https://doi.org/10.1016/j.neuron.2016.05.010
  35. Chatterjee D., Preuss F., Dederer V., Knapp S., Mathea S. Structural aspects of LIMK regulation and pharmacology // Cells. 2022. V. 11. № 1. Art. 142. https://doi.org/10.3390/cells11010142
  36. Cingolani L.A., Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy // Nat. Rev. Neurosci. 2008. V. 9. P. 344. https://doi.org/10.1038/nrn2373
  37. Cristofanilli M., Akopian A. Calcium channel and glutamate receptor activities regulate actin organization in the salamander retinal neuron // J. Physiol. 2006. V. 575. Pt. 2. P. 543. https://doi.org/10.1113/jphysiol.2006.114108
  38. Cuberos H., Vallée B., Vourc’h P. et al. Roles of LIM kinases in central nervous system function and dysfunction // FEBS Lett. 2015. V. 589. № 24. Pt B. P. 3795. https://doi.org/10.1016/j.febslet.2015.10.032
  39. Dan C., Kelly A., Bernard O., Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin // J. Biol. Chem. 2001. V. 276. № 34. P. 32115. https://doi.org/10.1074/jbc.M100871200
  40. Davis R.L., Kiger Jr J.A. Genetic manipulation of cyclic AMP levels in Drosophila melanogaster // Biochem Biophys Res Commun. 1978. V. 81. № 4. P. 1180. https://doi.org/10.1016/0006-291x(78)91261-5
  41. Davis R.L., Zhong Y. The Biology of Forgetting-A Perspective // Neuron. 2017. V. 95. № 3. P. 490. https://doi.org/10.1016/j.neuron.2017.05.039
  42. Dong, T., He, J., Wang, S. et al. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. № 27. P. 7644. https://doi.org/10.1073/pnas.1602152113
  43. Dubnai J., Chiang A.-S., Tully T. Neural substrates of memory: from synapse to system // J. Neurobiol. 2003. V. 54. № 1. P. 238. https://doi.org/10.1002/neu.10170
  44. Dudai Y. The Neurobiology of memory: concepts, findings, trends. 1st edition. Oxford University Press: 1989. 352 p.
  45. Edelmann L., Spiteri E., Koren K. et al. AT-rich palindromes mediate the constitutional t (11;22) translocation // Am. J. Hum. Genet. 2001. V. 68. № 1. P. 1. https://doi.org/10.1086/316952
  46. Edwards D.C., Gill G.N. Structural features of LIM kinase that control effects on the actin cytoskeleton // J. Biol. Chem. 1999. V. 274. P. 11352. https://doi.org/10.1074/jbc.274.16.11352
  47. Endo M., Ohashi K., Mizuno K. LIM Kinase and slingshot are critical for neurite extension // The J. Biological Chemistry. 2007 V. 282. № 18. P. 13692. https://doi.org/10.1074/jbc.M610873200
  48. Endo M., Ohashi K., Sasaki Y. et al. Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin // J. Neurosci. 2003. V. 23. P. 2527. https://doi.org/10.1523/JNEUROSCI.23-07-02527.2003
  49. Erlendsson S., Thorsen T.S., Vauquelin G. et al. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets // eLife 2019. V. 8. e39180. https://doi.org/10.7554/eLife.39180
  50. Foletta V.C., Moussi N., Sarmiere P.D., Bamburg J.R., Bernard O. LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues // Exp. Cell Res. 2004. V. 294. № 2. P. 392. https://doi.org/10.1016/j.yexcr.2003.11.024
  51. Forthmann B., Bürkner P.-C., Szardenings C., Benedek M., Holling H. A New perspective on the multidimensionality of divergent thinking tasks // Front. Psychol. 2019. V. 10. Art. 985. https://doi.org/10.3389/fpsyg.2019.00985
  52. Gao T.-T., Wang Y., Liu L. et al. LIMK1/2 in the mPFC plays a role in chronic stress-induced depressive- like effects in mice // Int. J. Neuropsychopharmacol. 2020. V. 23. № 12. P. 82. https://doi.org/10.1093/ijnp/pyaa067
  53. Gao Y., Shuai Y., Zhang X. et al. Genetic dissection of active forgetting in labile and consolidated memories in Drosophila // Proc. Natl. Acad. Sci. USA. 2019. V. 116. № 42. P. 21191. https://doi.org/10.1073/pnas.1903763116
  54. George J., Soares C., Montersino A., Beique J.-C., Thomas G.M. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity // eLife. 2015. V. 4. e06327. https://doi.org/10.7554/eLife.06327
  55. Ghosh H.S. Adult neurogenesis and the promise of adult neural stem cells // J. Exp. Neurosci. 2019. V. 13. Art. 1179069519856876. https://doi.org/10.1177/1179069519856876
  56. Gohla A., Birkenfeld J., Bokoch G.M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics // Nat. Cell Biol. 2005. V. 7. № 1. P. 21. https://doi.org/10.1038/ncb1201
  57. Gorovoy M., Niu J., Bernard O. et al. LIM Kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells // J. Biol. Chem. 2005. V. 280. P. 26533. https://doi.org/10.1074/jbc.M502921200
  58. Gromov P.S., Celis J.E. Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes // Exp. Cell Res. 1991. V. 195. № 2. P. 556. https://doi.org/10.1016/0014-4827(91)90412-n
  59. Gu Z., Jiang Q., Fu A.K.Y., Ip N.Y., Yan Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex // J. Neurosci. 2005. V. 25. № 20. P. 4974. https://doi.org/10.1523/JNEUROSCI.1086-05.2005
  60. Gu J., Lee C.W., Fan Y. et al. ADF/Cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity // Nat. Neurosci. 2010. V. 13. № 10. P. 1208. https://doi.org/10.1038/nn.2634
  61. Gundersen G.G., Cook T.A. Microtubules and signal transduction // Curr. Opin. Cell Biol. 1999. V. 11. № 1. P. 81. https://doi.org/10.1016/s0955-0674(99)80010-6
  62. Hebb D. The organization of behavior. Wiley: New York. 1949. 335 p.
  63. Hiraoka J., Okano I., Higuchi O., Yang N., Mizuno K. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain // FEBS Lett. 1996. V. 399. № 1–2. P. 117. https://doi.org/10.1016/s0014-5793(96)01303-8
  64. Huang J., Sun W., Ren J. et al. Genome-Wide Identification and characterization of actin-depolymerizing factor (ADF) family genes and expression analysis of responses to various stresses in Zea Mays L. // International Journal of Molecular Sciences. 2020. V. 21. № 5. Art 1751. https://doi.org/10.3390/ijms21051751
  65. Huang, W., Zhou Z., Asrar S. et al. p21-Activated Kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties // Mol. Cell. Biol. 2011. V. 31. № 3. P. 388. https://doi.org/10.1128/MCB.00969-10
  66. Humble J., Hiratsuka K., Kasai H., Toyoizumi T. Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder // Front. Comput. Neurosci. 2019. V. 13. Art. 38. https://doi.org/10.3389/fncom.2019.00038
  67. Kandel E.R. The molecular biology of memory storage: a dialogue between genes and synapses // Science. 2001. V. 294. № 5544. P. 1030. https://doi.org/10.1126/science.1067020
  68. Kandel E.R., Dudai Y., Mayford M.R. The molecular and systems biology of memory // Cell. 2014. V. 157. P. 163. https://doi.org/10.1016/j.cell.2014.03.001
  69. Kida S. A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP // Exp. Neurobiol. 2012. V. 21. № 4. P. 136. https://doi.org/10.5607/en.2012.21.4.136
  70. Konorski J. Conditioned Reflexes and Neuron Organization. Cambridge University Press, Cambridge. 1948. 267 p.
  71. Kozlov E.N., Tokmatcheva E.V., Khrustaleva A.M. et al. Long-term memory formation in Drosophila depends on the 3′UTR of CPEB Gene orb2 // Cells. 2023. V. 12. P. 318. https://doi.org/10.3390/cells12020318
  72. Lamprecht R., Farb C.R., LeDoux E.J. Fear Memory Formation Involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex // Neuron. 2002. V. 36. № 4. P. 727. https://doi.org/10.1016/s0896-6273(02)01047-4
  73. Lee-Hoeflich S.T., Causing C.G., Podkowa M. et al. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis // EMBO J. 2004. V. 23. № 24. P. 4792. https://doi.org/10.1038/sj.emboj.7600418
  74. Leung C., Cao F., Nguyen R. et al. Activation of entorhinal cortical projections to the dentate gyrus underlies social memory retrieval // Cell Rep. 2018. V. 23. № 8. P. 2379. https://doi.org/10.1016/j.celrep.2018.04.073
  75. Li R., Soosairajah J., Harari D. et al. Hsp90 increases LIM kinase activity by promoting its homo-dimerization // FASEB J. 2006. V. 20. № 8. P. 1218. https://doi.org/10.1096/fj.05-5258fje
  76. Lindström N.O., Neves C., McIntosh R. et al. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis // Gene Expr. Patterns. 2010. V. 11. № 3–4. P. 221. https://doi.org/10.1016/j.gep.2010.12.003
  77. Liu Y., Du S., Lv.L. et al. Hippocampal activation of Rac1 regulates the forgetting of object recognition memory // Curr Biol. 2016. V. 26. № 17. P. 2351. https://doi.org/10.1016/j.cub.2016.06.056
  78. Lunardi P., Sachser R.M., Sierra R.O. et al. Effects of hippocampal LIMK inhibition on memory acquisition, consolidation, retrieval, reconsolidation, and extinction // Mol. Neurobiol. 2017. V. 55. № 2. P. 958. https://doi.org/10.1007/s12035-016-0361-x
  79. Maekawa M., Ishizaki T., Boku S. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase // Science. 1999. V. 285. №5429. P. 895. https://doi.org/10.1126/science.285.5429.895
  80. Malinow R., Malenka R.C. AMPA receptor trafficking and synaptic plasticity // Annu. Rev. Neurosci. 2002. V. 25. P. 103. https://doi.org/10.1146/annurev.neuro.25.112701.142758
  81. Manetti F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators // Med. Res. Rev. 2011. V. 32. № 5. P. 968. https://doi.org/10.1002/med.20230
  82. Mao R., Deng R., Wei Y. et al. LIMK1 and LIMK2 regulate cortical development through affecting neural progenitor cell proliferation and migration // Mol. Brain. 2019. V. 12. № 1. Art. 67. https://doi.org/10.1186/s13041-019-0487-7
  83. McBride S.M.J., Giuliani G., Choi C. et al. Mushroom body ablation impairs short_term memory and long-term memory of courtship conditioning in Drosophila melanogaster // Neuron. 1999. V. 24. № 4. P. 967. https://doi.org/10.1016/s0896-6273(00)81043-0
  84. Medina C., de la Fuente V., Dieck T.S. et al. LIMK, Cofilin 1 and actin dynamics involvement in fear memory processing // Neurobiol Learn Mem. 2020. V. 173. P. 107275. https://doi.org/10.1016/j.nlm.2020.107275
  85. Medina J.H. Neural, cellular and molecular mechanisms of active forgetting // Front. Syst. Neurosci. 2018. V. 12. Art. 3. https://doi.org/10.3389/fnsys.2018.00003
  86. Medvedeva A.V., Tokmatcheva E.V., Kaminskaya A.N. et al. Parent-of-origin effects on nuclear chromatin organization and behavior in a Drosophila model for Williams–Beuren Syndrome // Vavilovskii Zhurnal Genetiki i Selektsii. 2021. V. 25. № 5. P. 472. https://doi.org/10.18699/VJ21.054
  87. Meng J., Meng Y., Hanna A., Janus C., Jia Z. Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3 // J. Neurosci. 2005. V. 25. № 28. P. 6641. https://doi.org/10.1523/JNEUROSCI.0028-05.2005
  88. Meng Y., Zhang Y., Tregoubov V. et al. Abnormal spine morphology and enhanced LTP in LIMK1 knockout mice // Neuron. 2002. V. 35. № 1. P. 121. https://doi.org/10.1016/s0896-6273(02)00758-4
  89. Misra U.K., Deedwania R., Pizzo S.V. Binding of activated alpha 2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2 dependent activation of LIMK // J. Biol. Chem. 2005. V. 280. № 28. P. 26278. https://doi.org/10.1074/jbc.M414467200
  90. Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation // Cell. Signal. 2013. V. 25. № 2. P. 457. https://doi.org/10.1016/j.cellsig.2012.11.001
  91. Mizuno K., Okano I., Ohashi K. et al. Identification of a human CDNA encoding a novel protein kinase with two repeats of the LIM/Double zinc finger motif // Oncogene. 1994. V. 9. № 6. P. 1605.
  92. Morimoto R.I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators // Genes Dev. 1998. V. 12. № 24. P. 3788. https://doi.org/10.1101/gad.12.24.3788
  93. Munsie L., Caron N., Atwal R.S. et al. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease // Hum. Mol. Genet. 2011. V. 20. № 10. P. 1937. https://doi.org/10.1093/hmg/ddr075
  94. Nagata K., Ohashi K., Yang N., Mizuno K. The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1 // Biochem. J. 1999. V. 343. Pt 1. P. 99.
  95. Namme J.N., Bepari A.K., Takebayashi H. Cofilin signaling in the CNS physiology and neurodegeneration // Int. J. Mol. Sci. 2021. V. 22. № 19. P. 10727. https://doi.org/10.3390/ijms221910727
  96. Ohta Y., Kousaka K., Nagata-Ohashi K. et al. Differential activities, subcellular distribution and tissue expression patterns of three members of slingshot family phosphatases that dephosphorylate cofilin // Genes Cells. 2003 V. 8. № 10. P. 811. https://doi.org/10.1046/j.1365-2443.2003.00678.x
  97. Okano I., Hiraoka J., Otera H. et al. Identification and characterization of a novel family of serine/threonine kinases containing two N-Terminal LIM motifs // J. Biol. Chem. 1995. V. 270. P. 31321.
  98. Patel U., Perez L., Farrell S. et al. Transcriptional changes before and after forgetting of a long term sensitization memory in Aplysia californica // Neurobiol. Learn. Mem. 2018. V. 155. P. 474. https://doi.org/10.1016/j.nlm.2018.09.007
  99. Prunier C., Prudent R., Kapur R., Sadoul K., Lafanechère L. LIM kinases: cofilin and beyond // Oncotarget. 2017. V. 8. № 25. P. 41749. https://doi.org/10.18632/oncotarget.16978
  100. Qu X., Kumar A., Blockus H., Waites C., Bartolini F. Activity-Dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission // Curr. Biol. 2019. V. 29. № 24. P. 4231.e5. https://doi.org/10.1016/j.cub.2019.10.049
  101. Rademacher N., Kuropka B., Kunde S.-A. et al. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions // eLife. 2019. V. 13. № 8. eLife.41299. https://doi.org/10.7554/eLife.41299
  102. Reaume C.J., Sokolowski M.B., Mery F. A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster // Proc. Biol. Sci. 2011. V. 278. P. 91. https://doi.org/10.1098/rspb.2010.1337
  103. Redt-Clouet C., Trannoy S., Boulanger A. et al. Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila // Eur. J. Neurosci. 2012. V. 35. № 11. P. 1684. https://doi.org/10.1111/j.1460-9568.2012.08103.x
  104. Rivlin P.K., St Clair R.M., Vilinsky I., Deitcher D.L. Morphology and molecular organization of the adult neuromuscular junction of Drosophila // J. Comp. Neurol. 2004. V. 468. № 4. P. 596. https://doi.org/10.1002/cne.10977
  105. Rosso S., Bollati F., Bisbal M. et al. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons // Mol. Biol. Cell. 2004. V. 15. P. 3433. https://doi.org/10.1091/mbc.e03-05-0328
  106. Rust M.B. Novel functions for ADF/cofilin in excitatory synapses – lessons from gene-targeted mice // Commun. Integr. Biol. 2015. V. 8. № 6. e1114194. https://doi.org/10.1080/19420889.2015.1114194
  107. Rust M.B., Gurniak C.B., Renner M. et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics // EMBO J. 2010. V. 29. № 11. P. 1889. https://doi.org/10.1038/emboj.2010.72
  108. Sacchetti P., Carpentier R., Segard P., Olive-Cren C., Lefebvre P. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1 // Nucleic Acids Res. 2006. V. 34. № 19. P. 5515. https://doi.org/10.1093/nar/gkl712
  109. Salvarezza S.B., Deborde S., Schreiner R. et al. LIM Kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans – Golgi network // Mol. Biol. Cell. 2009. V. 20. № 1. P. 438. https://doi.org/10.1091/mbc.e08-08-0891
  110. Savvateeva E. V., Kamyshev N.G. Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster // Pharmacol. Biochem. Behav. 1981. V. 14. № 5. P. 603. https://doi.org/10.1016/0091-3057(81)90119-2
  111. Savvateeva-Popova E.V., Zhuravlev A.V., Brázda V. et al. Drosophila model for the analysis of genesis of LIM-kinase 1-dependent Williams–Beuren syndrome cognitive phenotypes: INDELs, transposable elements of the Tc1/Mariner superfamily and microRNAs // Frontiers in Genetics. 2017. V. 8. Art. 123. https://doi.org/10.3389/fgene.2017.00123
  112. Scott R.W., Olson M.F. LIM Kinases: function, regulation and association with human disease // J. Mol. Med. 2007. V. 85. № 6. P. 555. https://doi.org/10.1007/s00109-007-0165-6
  113. Schubert V., Da Silva J.S., Dotti C.G. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor–dependent manner // J. Cell Biol. 2006. V. 172. № 3. P. 453. https://doi.org/10.1083/jcb.200506136
  114. Shi Y., Pontrello C.G., DeFea K.A., Reichardt L.F., Ethell I.M. Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity // J. Neurosci. 2009. V. 29. № 25. P. 8129. https://doi.org/10.1523/JNEUROSCI.4681-08.2009
  115. Shuai Y., Lu B., Hu Y. et al. Forgetting is regulated through Rac activity in Drosophila // Cell. 2010. V. 140. № 4. P. 579. https://doi.org/10.1016/j.cell.2009.12.044
  116. Simhadri P.K., Malwade R., Vanka R. et al. Dysregulation of LIMK-1/cofilin-1 pathway: A possible basis for alteration of neuronal morphology in experimental cerebral malaria // Ann Neurol. V. 82. № 3. P. 429. https://doi.org/10.1002/ana.25028
  117. Stanyon C.A., Bernard O. LIM-kinase1 // Int. J. Biochem. Cell Biol. 1999. V. 31. № 3–4. P. 389. https://doi.org/10.1016/s1357-2725(98)00116-2
  118. Sumi T., Matsumoto K., Shibuya A., Nakamura T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-bindnig kinase alpha // J. Biol. Chem. 2001. V. 276. № 25. P. 23092. https://doi.org/10.1074/jbc.C100196200
  119. Tantama M., Hung Y.P., Yellen G. Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain // Progress in Brain Research. 2012. V. 196. P. 235. https://doi.org/10.1016/B978-0-444-59426-6.00012-4
  120. Todorovski Z., Asrar S., Liu J. et al. LIMK1 regulates long-term memory and synaptic plasticity via the transcriptional factor CREB // Mol. Cell Biol. 2015. V. 35. № 8. P. 1316. https://doi.org/10.1128/MCB.01263-14
  121. Toshima J., Toshima J.Y., Amano T. et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation // Mol. Biol. Cell. 2001. V. 12. № 4. P. 1131. https://doi.org/10.1091/mbc.12.4.1131
  122. Tully T. Discovery of genes involved with learning and memory: An experimental synthesis of Hirschian and Benzerian perspectives // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 24. P. 13460. https://doi.org/10.1073/pnas.93.24.13460
  123. Tully T., Preat T., Boynton S.C., Del Veccihio M. Genetic dissection of consolidated memory in Drosophila // Cell. 1994. V. 79. № 1. P. 35–47. https://doi.org/10.1016/0092-8674(94)90398-0
  124. Van de Ven T.J., VanDongen H.M.A., VanDongen A.M.J. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density // J. Neurosci. 2005. V. 25. № 41. P. 9488. https://doi.org/10.1523/JNEUROSCI.2450-05.2005
  125. Villalonga E., Mosrin C., Normand T. et al. LIM Kinases, LIMK1 and LIMK2, are crucial node actors of the cell fate: molecular to pathological features // Cells. 2023. V. 12. № 5. P. 805. https://doi.org/10.3390/cells12050805
  126. Wada A., Fukuda M., Mishima M., Nishida E. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein // EMBO J. 1998. V. 17. № 6. P. 1635. https://doi.org/10.1093/emboj/17.6.1635
  127. Wang Y., Dong Q., Xu X.-F. et al. Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR trafficking // J. Neurosci. 2013. V. 33. № 15. P. 6423. https://doi.org/10.1523/JNEUROSCI.5107-12.2013
  128. Wang W., Townes-Anderson E. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses // Neural Regen. Res. 2016. V. 11. № 7. P. 1029. https://doi.org/10.4103/1673-5374.187018
  129. Wang Y., Zeng C., Li J. et al. PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior // Cell Rep. 2018. V. 24. № 8. P. 2029. https://doi.org/10.1016/j.celrep.2018.07.061
  130. Weeber E.J., Levenson J.M., Sweatt J.D. Molecular genetics of human cognition // Mol. Interv. 2002. V. 2. № 6. P. 376. https://doi.org/10.1124/mi.2.6.376
  131. White-Grindley E., Li L., Mohammad K.R. et al. Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2 // PLoS Biol. 2014. V. 12. №2. e1001786. https://doi.org/10.1371/journal.pbio.1001786
  132. Xu C., Li Q., Efimova O. et al. Identification of Immediate Early Genes in the Nervous System of Snail Helix lucorum // eNeuro. 2019. V. 6. № 3. e0416-18.2019. https://doi.org/10.1523/ENEURO.0416-18.2019
  133. Yang N., Higuchi O., Ohashi K. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization // Nature. 1998. V. 393. № 6687. P. 809. https://doi.org/10.1038/31735
  134. Yang N., Mizuno K. Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain // Biochem J. 1999. V. 338. Pt 3. P. 793.
  135. Yang E.J., Yoon J.H., Min D.S., Chung K.C. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells // J. Biol. Chem. 2004. V. 279. № 10. P. 8903. https://doi.org/10.1074/jbc.M311913200
  136. Yokoo T., Toyoshima H., Miura M. et al. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus // J. Biol. Chem. 2003. V. 278. № 52. P. 52919. https://doi.org/10.1074/jbc.M309334200
  137. You T., Gao W., Wei J. et al. Overexpression of LIMK1 promotes tumor growth and metastasis in gastric cancer // Biomed. Pharmacother. 2015. V. 69. P. 96. https://doi.org/10.1016/j.biopha.2014.11.011
  138. Zamboni F., Vieira S., Reis R.L., Oliveira J.M., Collins M.N. The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function // Progress in Materials Science. 2018. V. 97. P. 97. https://doi.org/10.1016/j.pmatsci.2018.04.003
  139. Zatsepina O.G., Nikitina E.A., Shilova V.Y. et al. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster // Cell Stress and Chaperones. 2021. V. 26. № 3. P. 575. https://doi.org/10.1007/s12192-021-01203-7
  140. Zhang X., Li Q., Wang L., Liu Z.-J., Zhong Y. Cdc42-Dependent forgetting regulates repetition effect in prolonging memory retention // Cell Rep. 2016. V. 16. № 3. P. 817. https://doi.org/10.1016/j.celrep.2016.06.041
  141. Zhang H., Ben Zablah Y., Liu A. et al. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice // Mol. Brain. 2021. V. 14. № 1. P. 121. https://doi.org/10.1186/s13041-021-00833-3
  142. Zhou Z., Meng Y., Asrar S., Todorovski Z., Jia Z. A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function // Neuropharmacology. 2009. V. 56. № 1. P. 81. https://doi.org/10.1016/j.neuropharm.2008.07.031

© Е.А. Никитина, Е.С. Заломаева, А.В. Медведева, А.В. Журавлев, Е.В. Савватеева-Попова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>