BIological and Pathophysiological Significance of De Novo Ceramide Biosynthesis Enzymes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—Ceramides are biologically active lipids with a wide range of effects that act as a second messenger in adipose tissue (AT) that regulates the metabolic homeostasis of the whole organism [83]. At least 3 ceramide synthesis pathways are known: de novo, sphingomyelinase, and the recycling/“rescue” pathway [47]. This review summarizes data on the physiological and pathophysiological effects of de novo ceramide biosynthesis enzymes.

About the authors

E. V. Belik

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: sionina.ev@mail.ru
Russia, 650002, Kemerovo

Yu. A. Dyleva

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: dyleva87@yandex.ru
Russia, 650002, Kemerovo

O. V. Gruzdeva

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases; Federal State Budgetary Educational Institution of Higher Education “Kemerovo State Medical University”
of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: o_gruzdeva@mail.ru
Russia, 650002, Kemerovo; Russia, 650056, Kemerovo

References

  1. Бабенко Н.А., Белый А.Н., Харченко В.С. Роль церамидов с различной длиной ацильной цепи в нарушении функционального состояния клеток печени // Таврический медико-биологический вестник. 2013. Т. 16. № 1. ч. 3(61). С. 29–33.
  2. Гамисония А.М. Ген KDSR: [Электронный ресурс] // ГЕНОКАРТА Генетическая энциклопедия. 2020. – URL: https://www.genokarta.ru/gene/KDSR. (Дата обращения: 06.04.2022).
  3. Alonso A., Goñi F.M. The Physical Properties of Ceramides in Membranes // Annu. Rev. Biophys. 2018. V. 47. P. 633–654. https://doi.org/10.1146/annurev-biophys-070317-033309
  4. Ardail D., Popa I., Alcantara K. et al. Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria // FEBS Lett. 2001. V. 488. P. 160–164. https://doi.org/10.1016/s0014-5793(00)02332-2
  5. Barbarroja N., Rodriguez-Cuenca S., Nygren H. et al. Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function // Diabetes. 2015. V. 64. № 4. P. 1180-92. https://doi.org/10.2337/db14-0359
  6. Beeler T., Bacikova D., Gable K. et al. The Saccharomyces cerevisiae TSC10/YBR265w Gene Encoding 3-Ketosphinganine Reductase Is Identified in a Screen for Temperature-sensitive Suppressors of the Ca2+-sensitive csg2Δ Mutant // J. Biological Chemistry. 1998. V. 273. № 46. P. 30688–30694. https://doi.org/10.1074/jbc.273.46.30688
  7. Birbes H., Bawab S.E, Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis // FASEB J. 2001. V. 15. P. 2669–2679. https://doi.org/10.1096/fj.01-0539com
  8. Bonzon-Kulichenko E., Schwudke D., Gallardo N. et al. Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue // Endocrinology. 2009. V. 150. P. 169–178. https://doi.org/10.1210/en.2008-0505
  9. Borodzicz S., Czarzasta K., Kuch M., Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders // Lipids Health Dis. 2015. V. 14. P. 55. https://doi.org/10.1186/s12944-015-0053-y
  10. Breslow D.K., Collins S.R., Bodenmiller B. et al. Orm family proteins mediate sphingolipid homeostasis. // Nature. 2010. V. 463. № 7284. P. 1048-53. https://doi.org/10.1038/nature08787
  11. Buede R., Rinker-Schaffer C., Pinto W.J., Lester R.L., Dickson R.C. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids // J. Bacteriol. 1991. V. 173. P. 4325–4332. https://doi.org/10.1128/jb.173.14.4325-4332.1991
  12. Chatham J.C., Young M.E. Metabolic remodeling in the hypertrophic heart: fuel for thought // Circ. Res. 2012. V. 111. P. 666-8. https://doi.org/10.1161/circresaha.112.277392
  13. Chaurasia B., Kaddai V.A., Lancaster G.I. et al. Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism // Cell Metab. 2016. V. 24. № 6. P. 820-34. https://doi.org/10.1016/j.cmet.2016.10.002
  14. Chen Y., Liu Y., Sullards M.C., Merrill Jr. A.H. An introduction to sphingolipid metabolism and analysis by new technologies // Neuromolecular Med. 2010. V. 12. P. 306–319. https://doi.org/10.1007/s12017-010-8132-8
  15. Cogolludo A., Villamor E., Perez-Vizcaino F., Moreno L. Ceramide and Regulation of Vascular Tone // Int J Mol Sci. 2019. V. 20. № 2. P. 411. https://doi.org/10.3390/ijms20020411
  16. Davis D., Kannan M., Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators // Adv. Biol. Regul. 2018 V. 70. P. 3–18. https://doi.org/10.1016/j.jbior.2018.08.002
  17. Davis D.L., Gable K., Suemitsu J., Dunn T.M., Wattenberg B.W. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes // J. Biol. Chem. 2019. V. 294. № 13. P. 5146–5156. https://doi.org/10.1074/jbc.RA118.007291
  18. de Mello V., Lankinen M., Schwab U. et al. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease // Diabetologia. 2009. V. 52. P. 2612–2615. https://doi.org/10.1007/s00125-009-1482-9
  19. Delgado A., Casas J., Llebaria A. et al. Inhibitors of sphingolipid metabolism enzymes // Biochim. Biophys. Acta. 2006. V. 1758. № 12. P. 1957-77. https://doi.org/10.1016/j.bbamem.2006.08.017
  20. Ebel P., vom Dorp K., Petrasch-Parwez E. et al. Inactivation of Ceramide Synthase 6 in Mice Results in an Altered Sphingolipid Metabolism and Behavioral Abnormalities // Journal of Biological Chemistry. 2013. V. 288. № 29. P. 21433–21447. https://doi.org/10.1074/jbc.M113.479907
  21. Fabrias G., Muñoz-Olaya J., Cingolani F. et al. Dihydroceramide desaturase and dihydrosphingolipids: Debutant players in the sphingolipid arena // Progress in Lipid Research, 2012. V. 51. № 2. P. 82–94. https://doi.org/10.1016/j.plipres.2011.12.002
  22. Fang H., Judd R.L. Adiponectin Regulation and Function // Compr. Physiol. 2018. V. 8. № 3. P. 1031–1063. https://doi.org/10.1002/cphy.c170046
  23. Fang Z., Pyne S., Pyne N.J. Ceramide and sphingosine 1-phosphate in adipose dysfunction // Prog. Lipid Res. 2019. V. 74. P. 145–159. https://doi.org/10.1016/j.plipres.2019.04.001
  24. Gagliostro V., Casas J., Caretti A. et al. Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy // The International Journal of Biochemistry & Cell Biology. 2012. V. 44. P. 2135–2143. https://doi.org/10.1016/j.biocel.2012.08.025
  25. Ginkel C., Hartmann D., vom Dorp K. et al. Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes // J. Biol. Chem. 2012. V. 287. P. 41888–41902. https://doi.org/10.1074/jbc.M112.413500
  26. Gosejacob D., Jäger P.S., Vom Dorp K. et al. Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity // The Journal of Biological Chemistry. 2016. V. 291. № 13. P. 6989–7003. https://doi.org/10.1074/jbc.M115.691212
  27. Gustafsson K., Sander B., Bielawski J., Hannun Y.A., Flygare J. Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism // Mol. Cancer Res. 2009. V. 7. P. 1086–1098. https://doi.org/10.1158/1541-7786.MCR-08-0361
  28. Hanada K., Hara T., Nishijima M. D-Serine inhibits serine palmitoyltransferase, the enzyme catalyzing the initial step of sphingolipid biosynthesis // FEBS Lett. 2000. V. 474. № 1. P. 63-5. https://doi.org/10.1016/s0014-5793(00)01579-9
  29. Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: lessons from sphingolipids // Nat. Rev. Mol. Cell Biol. 2008. V. 9. № 2. P. 139-50. https://doi.org/10.1038/nrm2329
  30. Hjelmqvist L., Tuson M., Marfany G. et al. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins // Genome Biol. 2002. V. 3. № 6. RESEARCH0027. https://doi.org/10.1186/gb-2002-3-6-research0027
  31. Holland W.L., Summers S.A. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism // Endocr. Rev. 2008. V. 29. P. 381–402. https://doi.org/10.1210/er.2007-25
  32. Hornemann T., Richard S., Rutti M.F. et al. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase // J. Biol. Chem. 2006. V. 281. P. 37275–37281. https://doi.org/10.1074/jbc.m608066200
  33. Hussain M.M., Jin W., Jiang X.C. Mechanisms involved in cellular ceramide homeostasis // Nutr. Metab. (Lond). 2012. V. 9. P. 71. https://doi.org/10.1186/1743-7075-9-71
  34. Jennemann R., Rabionet M., Gorgas K. et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption // Hum. Mol. Genet. 2012. V. 21. P. 586–608. https://doi.org/10.1093/hmg/ddr494
  35. Jin J., Hou Q, Mullen T.D. et al. Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells // J. Biol. Chem. 2008. V. 283. P. 26509–26517. https://doi.org/10.1074/jbc.M801597200
  36. Jin J., Mullen T.D., Hou Q. et al. AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells // J. Lipid Res. 2009. V. 50. P. 2389–2397. https://doi.org/10.1194/jlr.M900119-JLR200
  37. Kasumov T., Li L., Li M. et al. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis // PLoS One. 2015. https://doi.org/10.1371/journal.pone.0126910
  38. Kihara A., Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane // J. Biol. Chem. 2004. V. 279. P. 49 243–49 250. https://doi.org/10.1074/jbc.M405915200
  39. Kim G.T., Devi S., Sharma A. et al. Upregulation of the serine palmitoyltransferase subunit SPTLC2 by endoplasmic reticulum stress inhibits the hepatic insulin response // Exp. Mol. Med. 2022. https://doi.org/10.1038/s12276-022-00766-4
  40. Klevstig M., Ståhlman M., Lundqvist A. et al. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in thepost-ischemic heart // J. Mol. Cell. Cardiol. 2016. V. 93. P. 69–72. https://doi.org/10.1016/j.yjmcc.2016.02.019
  41. Kraveka J.M., Li L., Szulc Z.M. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells // J. Biol. Chem. 2007. V. 282. P. 16718-28. https://doi.org/10.1074/jbc.m700647200
  42. Kumagai K., Yasuda S., Okemoto K. et al. CERT mediates intermembrane transfer of various molecular species of ceramides // J. Biol. Chem. 2005. V. 280. № 8. P. 6488–6495. https://doi.org/10.1074/jbc.M409290200
  43. Laviad E.L., Kelly S., Merrill A.H., Futerman A.H. Modulation of ceramide synthase activity via dimerization // J. Biol. Chem. 2012. V. 287. P. 21025–21033. https://doi.org/10.1074/jbc.M112.363580
  44. Laviad E.L., Albee L., Pankova-Kholmyansky I. et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate // J. Biol. Chem. 2008. V. 283. P. 5677–5684. https://doi.org/10.1074/jbc.M707386200
  45. Lee S.Y., Lee H.Y., Song J.H. et al. Adipocyte-Specific Deficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance // Diabetes. 2017. V. 66. № 10. P. 2596–2609. https://doi.org/10.2337/db16-1232
  46. Levy M., Futerman A.H. Mammalian ceramide synthases // IUBMB Life. 2010. V. 62. № 5. P. 347-56. https://doi.org/10.1002/iub.319
  47. Li Y., Talbot C.L., Chaurasia B. Ceramides in Adipose Tissue // Front. Endocrinol. 2020. V. 11. P. 407. https://doi.org/10.3389/fendo.2020.00407
  48. Megha, Sawatzki P., Kolter T., Bittman R., London E. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts) // Biochimica et Biophysica Acta (BBA) – Biomembranes. 2007. V. 1768. № 9. P. 2205–2212. https://doi.org/10.1016/J.BBAMEM.2007.05.007
  49. Merrill A.H. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway // J. Biol. Chem. 2002. V. 277. P. 25843-6. https://doi.org/10.1074/jbc.R200009200
  50. Merrill A.H. Jr., Sullards M.C., Allegood J.C., Kelly S., Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry // Methods. 2005. V. 36. P. 207–224. https://doi.org/10.1016/j.ymeth.2005.01.009
  51. Mesicek J., Lee H., Feldman T. et al. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells // Cell. Signalling. 2010. V. 22. P. 1300–1307. https://doi.org/10.1016/j.cellsig.2010.04.006
  52. Mesika A., Ben-Dor S., Laviad E.L., Futerman A.H. A new functional motif in Hox domain-containing ceramide synthases: identification of a novel region flanking the Hox and TLC domains essential for activity // J. Biol. Chem. 2007. V. 282. P. 27366–27373. https://doi.org/10.1074/jbc.M703487200
  53. Michel C., van Echten-Deckert G., Rother J. et al. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide // J. Biol. Chem. 1997. V. 272. № 36. P. 22432-7. https://doi.org/10.1074/jbc.272.36.22432
  54. Miranda J.J., Barrientos-Gutiérrez T., Corvalan C. et al. Understanding the Rise of Cardiometabolic Diseases in Low- and Middle-Income Countries // Nat. Med. 2019. V. 25. № 11. P. 1667–1679. 10.1038/s41591-019-0644-7' target='_blank'>https://doi.org/doi: 10.1038/s41591-019-0644-7
  55. Mizutani Y., Kihara A., Igarashi Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides // Biochem. J. 2005. V. 390. P. 263–271. https://doi.org/10.1042/BJ20050291
  56. Mullen T.D., Hannun Y.A., Obeid L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology // Biochem. J. 2012. V. 441. № 3. P. 789–802. https://doi.org/10.1042/BJ20111626
  57. Mullen T.D., Jenkins R.W., Clarke C.J. et al. Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death: Involvemnt of salvage pathway in regulating postmitochondrial events // J. Biol. Chem. 2011. V. 286. P. 15929–15942. https://doi.org/10.1074/jbc.M111.230870
  58. Omae F., Miyazaki M., Enomoto A. et al. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine // Biochem. J. 2004. V. 379. P. 687-95. https://doi.org/10.1042/bj20031425
  59. Panjarian S., Kozhaya L., Arayssi S. et al. De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation // Prostaglandins Other Lipid Mediat. 2008. V. 86. P. 41–48. https://doi.org/10.1016/j.prostaglandins.2008.02.004
  60. Park W.J., Park J.W. The effect of altered sphingolipid acyl chain length on various disease models // Biol. Chem. 2015. V. 396. № 6–7. P. 693–705. https://doi.org/10.1515/hsz-2014-0310
  61. Parks B.W., Nam E., Org E. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice // Cell Metab. 2013. V. 17. P. 141–152. https://doi.org/10.1016/j.cmet.2012.12.007
  62. Pewzner-Jung Y., Park H., Laviad E.L. et al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways // J. Biol. Chem. 2010. V. 285. P. 10902–10910. https://doi.org/10.1074/jbc.M109.077594
  63. Raichur S., Wang S.T., Chan P.W. et al. CerS2 haploinsufficiency inhibits b-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance // Cell Metab. 2014. V. 20. P. 687–695. https://doi.org/10.1016/j.cmet.2014.09.015
  64. Riebeling C., Allegood J.C., Wang E., Merrill A.H. Jr., Futerman A.H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors // J. Biol. Chem. 2003. V. 278. P. 43 452–43 459. https://doi.org/10.1074/jbc.M307104200
  65. Rimokh R., Gadoux M., Bertheas M.-F. et al. FVT-1, a novel human transcription unit affected by variant translocation t(2;18)(p11;q21) of follicular lymphoma // Blood. 1993. V. 81. P. 136–142.
  66. Roberts L.D., Virtue S., Vidal-Puig A., Nicholls A.W., Griffin J.L. Metabolic phenotyping of a model of adipocyte differentiation // Physiol. Genomics. 2009. V. 39. P. 109–119. https://doi.org/10.1152/physiolgenomics.90365.2008
  67. Russo S.B., Baicu C.F., Van Laer A. et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes // J. Clin. Invest. 2012. V. 122. P. 3919–3930. https://doi.org/10.1172/JCI63888
  68. Sassa T., Hirayama T., Kihara A. Enzyme activities of the ceramide synthases CERS2-6 are regulated by phosphorylation in the C-terminal region // J. Biol. Chem. 2016. V. 291. P. 7477–7487. https://doi.org/10.1074/jbc.M115.695858
  69. Separovic D., Kelekar A., Nayak A.K. et al. Increased ceramide accumulation correlates with downregulation of the autophagy protein ATG-7 in MCF-7 cells sensitized to photodamage // Arch. Biochem. Biophys. 2010. V. 494. P. 101–105. https://doi.org/10.1016/j.abb.2009.11.023
  70. Shabbits J.A., Mayer L.D. Intracellular delivery of ceramide lipids via liposomes enhances apoptosis in vitro // Biochim. Biophys. Acta. 2003. V. 1612. № 1. P. 98–106. https://doi.org/10.1016/s0005-2736(03)00108-1
  71. Signorelli P., Munoz-Olaya J.M., Gagliostro V. et al. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells // Cancer Letters. 2009. V. 282. P. 238–243. https://doi.org/10.1016/j.canlet.2009.03.020
  72. Siskind L.J., Colombini M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis // J. Biol. Chem. 2000. V. 275. P. 38 640–38 644. https://doi.org/10.1074/jbc.C000587200
  73. Sokolowska E., Blachnio-Zabielska A. The Role of Ceramides in Insulin Resistance // Front. Endocrinol. (Lausanne). 2019. V. 10. P. 577. https://doi.org/10.3389/fendo.2019.00577
  74. Sridevi P., Alexander H., Laviad E.L. et al. Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing // Exp. Cell Res. 2010. V. 316. P. 78–91. https://doi.org/10.1016/j.yexcr.2009.09.027
  75. Sridevi P., Alexander H., Laviad E.L. et al. Ceramide synthase 1 is regulated by proteasomal mediated turnover // Biochim. Biophys. Acta. 2009. V. 1793. P. 1218–1227. https://doi.org/10.1016/j.bbamcr.2009.04.006
  76. Stiban J., Caputo L., Colombini M. Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins // J. Lipid Res. 2008. V. 49. № 3. P. 625-34. https://doi.org/10.1194/jlr.M700480-JLR200
  77. Stiban J., Tidhar R., Futerman A.H. Ceramide synthases: roles in cell physiology and signaling // Adv. Exp. Med. Biol. 2010. V. 688. P. 60–71. https://doi.org/10.1007/978-1-4419-6741-1_4
  78. Stratford S., Hoehn K.L., Liu F., Summers S.A. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B // J. Biol. Chem. 2004. V. 279. № 35. P. 36608-15. https://doi.org/10.1074/jbc.M406499200
  79. Summers S.A., Chaurasia B., Holland W.L. Metabolic Messengers: Ceramides // Nat. Metab. 2019. V. 1. № 11. P. 1051–1058. https://doi.org/10.1038/s42255-019-0134-8
  80. Turpin S.M., Nicholls H.T., Willmes D.M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance // Cell Metab. 2014. V. 20. P. 678–686. https://doi.org/10.1016/j.cmet.2014.08.002
  81. Turpin-Nolan S.M., Brüning J.C. The role of ceramides in metabolic disorders: when size and localization matters // Nat Rev Endocrinol. 2020. V. 16. P. 224–233. https://doi.org/10.1038/s41574-020-0320-5
  82. Ussher J.R, Koves T.R., Cadete V.J. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption // Diabetes. 2010. V. 59. № 10. P. 2453-64. https://doi.org/10.2337/db09-1293
  83. Xia J.Y., Holland W.L., Kusminski C.M. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis // Cell Metab. 2015. V. 22. P. 266-78. https://doi.org/10.1016/j.cmet.2015.06.007
  84. Yang F., Liu C., Liu X. et al. Effect of Epidemic Intermittent Fasting on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // Front. Nutr. 2021. V. 803. https://doi.org/10.3389/fnut.2021.669325
  85. Yard B.A., Carter L.G., Johnson K.A. et al. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis // J. Mol. Biol. 2007. V. 370. № 5. P. 870-86. https://doi.org/10.1016/j.jmb.2007.04.086
  86. Zelnik I.D., Ventura A.E., Kim J.L., Silva L.C., Futerman A.H. The role of ceramide in regulating endoplasmic reticulum function. // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020. V. 1865. № 1. P. 158489. https://doi.org/10.1016/j.bbalip.2019.06.015
  87. Zheng T., Li W., Wang J., Altura B.T., Altura B.M. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca(2+)](i) in canine cerebral vascular muscle // Am. J. Physiol. Heart Circ. Physiol. 2000. V. 278. P. H1421–H1428. https://doi.org/10.1152/ajpheart.2000.278.5.H1421
  88. Zheng W., Kollmeyer J, Symolon H. et al. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy // Biochim. Biophys. Acta. 2006. V. 1758. № 12. P. 1864-84. https://doi.org/10.1016/j.bbamem.2006.08.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (201KB)

Copyright (c) 2023 Е.В. Белик, Ю.А. Дылева, О.В. Груздева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies