Zebrafish as a Promising Model in Translational Neurobiology and Biomedicine

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

—High prevalence of the central nervous system disorders necessitates novel methods and approaches for their pharmacological correction. Traditionally used rodent models are limited by high costs of research, complex maintenance and care, and long development. The use of alternative, aquatic model organisms, such as the zebrafish (Danio rerio), in translational neuroscience and medicine allows for fast efficient experimentation with easy maintenance, manipulations, and rapid development. Zebrafish are also sensitive to major classes of physiologically active agents, which makes this model indispensable for preclinical studies of a wide range of small molecules. The similarity of neurochemical systems, the presence of major neurotransmitters, a high degree of genetic and physiological homology with humans, the availability of both larval and adult fish models, and embryonic transparency provide multiple possibilities for using this organism to model CNS pathologies and its genetic and environmental causes.

Авторлар туралы

T. Kolesnikova

Neurobiology Department, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg

Хат алмасуға жауапты Автор.
Email: philimontani@yandex.ru
Russia, 354340, Sochi; Russia, 197758 , Pesochny

N. Ilyin

Almazov Medical Research Centre, Institute of Experimental Medicine, Ministry of Healthcare of Russian Federation; Institute of Translational Biomedicine, St. Petersburg State University; Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg

Email: philimontani@yandex.ru
Russia, 197341, St. Petersburg; Russia, 199034, St. Petersburg; Russia, 197758 , Pesochny

M. Kotova

Neurobiology Department, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Email: philimontani@yandex.ru
Russia, 354340, Sochi

A. Kaluev

Neurobiology Department, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Almazov Medical Research Centre, Institute of Experimental Medicine, Ministry of Healthcare of Russian Federation; Institute of Translational Biomedicine, St. Petersburg State University; Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg

Email: philimontani@yandex.ru
Russia, 354340, Sochi; Russia, 197341, St. Petersburg; Russia, 199034, St. Petersburg; Russia, 197758 , Pesochny

Әдебиет тізімі

  1. Akindipe T., Wilson D., Stein D.J. Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors // Metabolic brain disease. 2014. V. 29. № 2. P. 351.
  2. Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: structure, function and inhibition // Biochemical journal. 2001. V. 357. № 3. P. 593.
  3. Alfaro J.M., Ripoll-Gómez J., Burgos J.S. Kainate administered to adult zebrafish causes seizures similar to those in rodent models // European J. of Neuroscience. 2011. V. 33. № 7. P. 1252.
  4. Alsop D., Vijayan M. The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event // General and comparative endocrinology. 2009. V. 161. № 1. P. 62.
  5. Alsop D., Vijayan M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2008. V. 294. № 3. P. 711.
  6. Amores A., Catchen J., Ferrara A., Fontenot Q., Postlethwait J.H. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication // Genetics. 2011. V. 188. № 4. P. 799.
  7. Antunes M., Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications // Cognitive processing. 2012. 13. № 2. P. 93.
  8. Arenzana F.J., Clemente D., Sánchez-González R., Porteros Á., Aijón J., Arévalo R. Development of the cholinergic system in the brain and retina of the zebrafish // Brain research bulletin. 2005. V. 66. № 4–6. P. 421.
  9. Arunachalam M., Raja M., Vijayakumar C., Malaiammal P., Mayden R.L. Natural history of zebrafish (Danio rerio) in India // Zebrafish. 2013. V. 10. № 1. P. 1.
  10. Association AP. Diagnostic and statistical manual of mental disorders: American Psychiatric Publishing. 2013.
  11. Bailey J.M., Oliveri A.N., Levin E.D. Pharmacological analyses of learning and memory in zebrafish (Danio rerio) // Pharmacology Biochemistry and Behavior. 2015. V. 139. P. 103.
  12. Baraban S.C., Dinday M.T., Hortopan G.A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment // Nature communications. 2013. V. 4. № 1. P. 1.
  13. Bardo M., Bevins R.A. Conditioned place preference: what does it add to our preclinical understanding of drug reward? // Psychopharmacology. 2000. V. 153. № 1. P. 31.
  14. Barr A.M., Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression // Neuroscience & Biobehavioral Reviews. 2005. V. 29. № 4–5. P. 675.
  15. Baxendale S., Holdsworth C.J., Meza Santoscoy P.L. et al. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures // Disease models & Mechanisms. 2012. V. 5. № 6. P. 773.
  16. Belanoff J.K., Gross K., Yager A., Schatzberg A.F. Corticosteroids and cognition // Journal of psychiatric research. 2001. V. 35. № 3. P. 127.
  17. Bencan Z., Sledge D., Levin E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety // Pharmacology Biochemistry and Behavior. 2009. V. 94. № 1. P. 75.
  18. Benes F.M., Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder // Neuropsychopharmacology. 2001. V. 25. № 1. P. 1.
  19. Bloom H.D., Perlmutter A. A sexual aggregating pheromone system in the zebrafish, Brachydanio rerio (Hamilton-Buchanan) // Journal of Experimental Zoology. 1977. V. 199. № 2. P. 215.
  20. Boehmler W., Obrecht-Pflumio S., Canfield V., Thisse C., Thisse B., Levenson R. Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish // Developmental dynamics: an official publication of the American Association of Anatomists. 2004. V. 230. № 3. P. 481.
  21. Braida D., Donzelli A., Martucci R. et al. Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish // Psychopharmacology. 2012. V. 220. № 2. P. 319.
  22. Braida D., Ponzoni L., Martucci R., Sala M. A new model to study visual attention in zebrafish // Progress in Neuro-Psychophar. Bio. Psych. 2014. V. 55. P. 80.
  23. Brambilla P., Perez J., Barale F., Schettini G., Soares J. GABAergic dysfunction in mood disorders // Molecular psychiatry. 2003. V. 8. № 8. P. 721.
  24. Brown K.H., Dobrinski K.P., Lee A.S. et al. Extensive genetic diversity and substructuring among zebrafish strains revealed through copy number variant analysis // Proceedings of the National Academy of Sciences. 2012. V. 109. № 2. P. 529.
  25. Bruni G., Rennekamp A.J., Velenich A. et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds // Nature chemical biology. 2016. V. 12. № 7. P. 559.
  26. Bystritsky A. Treatment-resistant anxiety disorders // Molecular psychiatry. 2006. V. 11. № 9. P. 805.
  27. Cachat J., Stewart A., Utterback E. et al. Three-dimensional neurophenotyping of adult zebrafish behavior // PloS One. 2011. V. 6. № 3. P. 17597.
  28. Canavello P.R., Cachat J.M., Beeson E.C. et al. Measuring endocrine (cortisol) responses of zebrafish to stress // Zebrafish neurobehavioral protocols: Springer. 2011. p. 135.
  29. Clemente D., Porteros A., Weruaga E. et al. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis // Journal of Comparative Neurology. 2004. V. 474. № 1. P. 75.
  30. Coe T., Hamilton P., Griffiths A., Hodgson D, .Wahab M., Tyler C. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies // Ecotoxicology. 2009. V. 18. № 1. P. 144.
  31. Collier A.D., Echevarria D.J. The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs // Behavioural pharmacology. 2013. V. 24. № 5–6. P. 375.
  32. Collier A.D., Khan K.M., Caramillo E.M., Mohn R.S., Echevarria D.J. Zebrafish and conditioned place preference: a translational model of drug reward // Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2014. V. 55. P. 16.
  33. Colwill R.M., Raymond M., Ferreira L., Escudero H. Visual discrimination learning in zebrafish (Danio rerio). Behav. proc. 2005. V. 70(1). P. 19.
  34. Conklin E.E., Lee K.L., Schlabach S.A., Woods I.G. VideoHacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment // J. of Undergraduate Neuroscience Education. 2015. V. 13. № 3. P. 120.
  35. Cramer K.S., Leamey C.A., Sur M. Nitric oxide as a signaling molecule in visual system development // Progress in brain research. 1998. V. 118. P. 101.
  36. Cunliffe V.T. Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures // J. of Neuroscience Methods. 2016. V. 260. P. 91.
  37. Dahlbom S.J., Backström T., Lundstedt-Enkel K., Winberg S. Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio) // Behavioural brain research. 2012. V. 228. № 2. P. 333.
  38. Danilova N., Krupnik V.E., Sugden D., Zhdanova I.V. Melatonin stimulates cell proliferation in zebrafish embryo and accelerates its development // The FASEB Journal. 2004. V. 18. № 6. P. 751.
  39. Darland T., Dowling J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish // Proceedings of the National Academy of Sciences. 2001. V. 98. № 20. P. 11691.
  40. Darrow K.O., Harris W.A. Characterization and development of courtship in zebrafish, Danio rerio // Zebrafish. 2004. V. 1. № 1. P. 40.
  41. De Campos E.G., Bruni A.T., De Martinis B.S. Ketamine induces anxiolytic effects in adult zebrafish: a multivariate statistics approach // Behav. Brain research. 2015. V. 292. P. 537.
  42. Delgado L., Schmachtenberg O. Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAα1 and GABAB1 in the zebrafish cerebellum // The Cerebellum. 2008. V. 7. № 3. P. 444.
  43. Deussing J.M. Animal models of depression // Drug discovery today: Disease models. 2006. V. 3. № 4. P. 375.
  44. Doldan M., Prego B., Holmqvist B., De Miguel E. Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain // European journal of morphology. 1999. V. 37. № 2–3. P. 126.
  45. Drapeau P., Saint-Amant L., Buss R.R., Chong M., McDearmid J.R., Brustein E. Development of the locomotor network in zebrafish // Progress in neurobiology. 2002. V. 68. № 2. P. 85.
  46. Edden R.A., Crocetti D., Zhu H., Gilbert D.L., Mostofsky S.H. Reduced GABA concentration in attention-deficit/hyperactivity disorder // Archives of general psychiatry. 2012. V. 69. № 7. P. 750.
  47. Eddins D., Cerutti D., Williams P., Linney E., Levin E.D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits // Neurotoxicology and teratology. 2010. V. 32. № 1. P. 99.
  48. Engeszer R.E., Patterson L.B., Rao A.A., Parichy D.M. Zebrafish in the wild: a review of natural history and new notes from the field // Zebrafish. 2007. V. 4. № 1. P. 21.
  49. Engeszer R.E., Wang G., Ryan M.J., Parichy D.M. Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior // Proceedings of the National Academy of Sciences. 2008. V. 105. № 3. P. 929.
  50. Eriksson K.S., Peitsaro N., Karlstedt K., Kaslin J., Panula P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems // European Journal of Neuroscience. 1998. V. 10. № 12. P. 3799.
  51. Fern Fernandes Y., Tran S., Abraham E., Gerlai R. Embryonic alcohol exposure impairs associative learning performance in adult zebrafish // Behav. Brain research. 2014. V. 265. P. 181.
  52. Filippi A., Mueller T., Driever W. vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain // Journal of Comparative Neurology. 2014. V. 522. № 9. P. 2019.
  53. Fredriksson R., Schiöth H.B. The repertoire of G-protein–coupled receptors in fully sequenced genomes // Molecular pharmacology. 2005. V. 67. № 5. P. 1414.
  54. Fritsche R., Schwerte T., Pelster B. Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2000. V. 279. № 6. P. 2200.
  55. Fulcher N., Tran S., Shams S., Chatterjee D., Gerlai R. Neurochemical and behavioral responses to unpredictable chronic mild stress following developmental isolation: the zebrafish as a model for major depression // Zebrafish. 2017. V. 14. № 1. P. 23.
  56. Fumagalli F., Molteni R., Racagni G., Riva M.A. Stress during development: Impact on neuroplasticity and relevance to psychopathology // Progress in neurobiology. 2007. V. 81. № 4. P. 197.
  57. Gerlach G. Pheromonal regulation of reproductive success in female zebrafish: female suppression and male enhancement // Animal Behaviour. 2006. V. 72. № 5. P. 1119.
  58. Gerlai R., Lahav M., Guo S., Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects // Pharmacology biochemistry and behavior. 2000. V. 67. № 4. P. 773.
  59. Griebel G., Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery // Nature reviews Drug discovery. 2013. V. 12. № 9. P. 667.
  60. Griffiths B.B., Schoonheim P.J, Ziv L., Voelker L., Baier H., Gahtan E. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response // Frontiers in behavioral neuroscience. 2012. V. 6. P. 68.
  61. Grone B.P., Baraban S.C. Animal models in epilepsy research: legacies and new directions // Nature neuroscience. 2015. V. 18. № 3. P. 339.
  62. Hamilton F. An account of the fishes found in the river Ganges and its branches // Archibald Constable.1822.
  63. Hek K., Direk N., Newson R.S. et al. Anxiety disorders and salivary cortisol levels in older adults: a population-based study // Psychoneuroendocrinology. 2013. V. 38. № 2. P. 300.
  64. Herbert J. Cortisol and depression: three questions for psychiatry // Psychological medicine. 2013. V. 43. № 3. P. 449.
  65. Higashijima S.I., Mandel G., Fetcho J.R. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish // J. of Comparative Neurology. 2004. V. 480. № 1. P. 1.
  66. Holmqvist B., Ellingsen B., Alm P. et al. Identification and distribution of nitric oxide synthase in the brain of adult zebrafish // Neuroscience Letters. 2000. V. 292. № 2. P. 119.
  67. Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implicatons for therapy // Journal of affective disorders. 2001. V. 62 . № 1–2. P. 77.
  68. Holzschuh J., Ryu S., Aberger F., Driever W. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo // Mechanisms of development. 2001. V. 101. № 1–2. P. 237.
  69. Howell K.R., Kutiyanawalla A., Pillai A. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex // PloS One. 2011. V. 6. № 5. P. 20198.
  70. Hsieh D.J.Y., Liao C.F. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia // British journal of pharmacology. 2002. V. 137. № 6. P. 782.
  71. Idalencio R., Kalichak F., Rosa J.G.S. et al. Waterborne risperidone decreases stress response in zebrafish // PLoS One. 2015. V. 10. № 10. P. 0140800.
  72. Insel T.R., Voon V., Nye J.S. et al. Innovative solutions to novel drug development in mental health // Neuroscience & Biobehavioral Reviews. 2013. V. 37. № 10. P. 2438.
  73. Jones L.J., Norton W.H. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders // Behav. Brain research. 2015. V. 276. P. 171.
  74. Kalueff A.V., Gebhardt M., Stewart A.M. et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond // Zebrafish. 2013. V. 10. № 1. P. 70.
  75. Kalueff A.V., Stewart A.M., Gerlai R. Zebrafish as an emerging model for studying complex brain disorders // Trends in pharmacological sciences. 2014. V. 35. № 2. P. 63.
  76. Kane J., Honigfeld G., Singer J., Meltzer H. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine // Archives of general psychiatry. 1988. V. 45. № 9. P. 789.
  77. Kang J., Nachtrab G., Poss K.D. Local Dkk1 crosstalk from breeding ornaments impedes regeneration of injured male zebrafish fins // Developmental cell. 2013. V. 27. № 1. P. 19.
  78. Kaslin J., Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio) // J. of Comparative Neurology. 2001. V. 440. № 4. P. 342.
  79. Kedikian X., Faillace M.P., Bernabeu R. Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish // PLoS One. 2013. V. 8. № 7. P. 69453.
  80. Keedwell P.A., Poon L., Papadopoulos A.S., Marshall E.J., Checkley S.A. Salivary cortisol measurements during a medically assisted alcohol withdrawal // Addiction Biology. 2001. V. 6. № 3. P. 247.
  81. Kendler K.S., Aggen S.H., Neale M.C. Evidence for multiple genetic factors underlying DSM-IV criteria for major depression // JAMA psychiatry. 2013. V. 70. № 6. P. 599.
  82. Kessler R.C. The global burden of anxiety and mood disorders: putting the European Study of the Epidemiology of Mental Disorders (ESEMeD) findings into perspective // J. of Clinical Psychiatry. 2007. V. 68. P. 10.
  83. Kessler R.C., Chiu W.T., Demler O., Walters E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication // Archives of general psychiatry. 2005. V. 62. № 6. P. 617.
  84. Kily L.J., Cowe Y.C., Hussain O. et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways // J. of Experimental Biology. 2008. V. 211. № 10. P. 1623.
  85. Kim Y-H., Lee Y., Kim D., Jung M.W., Lee C.-J. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish // Neuroscience Research. 2010. V. 67. № 2. P. 156.
  86. Kim Y.-J., Nam R.-H., Yoo Y.M., Lee C.-J. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio) // Neuroscience letters. 2004. V. 355. № 1–2. P. 29.
  87. Klee E.W., Schneider H., Clark K.J. et al. Zebrafish: a model for the study of addiction genetics // Human genetics. 2012. V. 131. № 6. P. 977.
  88. Kolesnikova T.O., Khatsko S.L., Shevyrin V.A., Morzherin Y.Y., Kalueff A.V. Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish // Neurotoxicology and Teratology. 2017. V. 59. P. 62.
  89. Koob G.F. Drugs of abuse: anatomy, pharmacology and function of reward pathways // Trends in pharmacological sciences. 1992. V. 13. P. 177.
  90. Korte S. Corticosteroids in relation to fear, anxiety and psychopathology // Neuroscience & Biobehavioral Reviews. 2001. V. 25. № 2. P. 117.
  91. Kulkarni P., Chaudhari G.H., Sripuram V., Banote R.K., Kirla K.T., Sultana R. et al. Oral dosing in adult zebrafish: proof-of-concept using pharmacokinetics and pharmacological evaluation of carbamazepine // Pharm. Rep. 2014. V. 66. № 1. P. 179.
  92. Kyzar E.J., Kalueff A.V. Exploring hallucinogen pharmacology and psychedelic medicine with zebrafish models // Zebrafish. 2016. V. 13. № 5. P. 379.
  93. Lara D., Souza D. Schizophrenia: a purinergic hypothesis // Medical hypotheses. 2000. V. 54. № 2. P. 157.
  94. Lau B., Bretaud S., Huang Y., Lin E., Guo S. Dissociation of food and opiate preference by a genetic mutation in zebrafish // Genes, Brain and Behavior. 2006. V. 5. № 7. P. 497.
  95. Lee S.L., Horsfield J.A., Black M.A., Rutherford K., Gemmell N.J. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone // Biology of Reproduction. 2018. V. 99. № 2. P. 446.
  96. Levin E.D., Bencan Z., Cerutti D.T. Anxiolytic effects of nicotine in zebrafish // Physiology & behavior. 2007. V. 90. № 1. P. 54–8.
  97. Lieberman J.A., Stroup T.S., McEvoy J.P. et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia // New England journal of medicine. 2005. V. 353. № 12. P. 1209.
  98. Liew W.C., Orbán L. Zebrafish sex: a complicated affair // Briefings in functional genomics. 2014. V. 13. № 2. P. 172.
  99. Lillesaar C., Stigloher C., Tannhäuser B., Wullimann M.F., Bally-Cuif L. Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression // Journal of Comparative Neurology. 2009. V. 512. № 2. P. 158.
  100. Liu Y.-C., Bailey I., Hale M.E. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio) // J. of Comparative Physiology A. 2012. V. 198. № 1. P. 11.
  101. López-Patiño M.A., Yu L., Cabral H., Zhdanova I.V. Anxiogenic effects of cocaine withdrawal in zebrafish // Physiology & behavior. 2008. V. 93. № 1–2. P. 160.
  102. Lovallo W.R. Cortisol secretion patterns in addiction and addiction risk // International Journal of Psychophysiology. 2006. V. 59. № 3. P. 195.
  103. Love D.R., Pichler F.B., Dodd A., Copp B.R., Greenwood D.R. Technology for high-throughput screens: the present and future using zebrafish // Current opinion in biotechnology. 2004. V. 15. № 6. P. 564.
  104. Lucassen P., Oomen C., Schouten M., Encinas J., Fitzsimons C. Adult neurogenesis, chronic stress and depression // Adult Neurogenesis in the Hippocampus: Elsevier. 2016. P. 177.
  105. Lucke-Wold B. The varied uses of conditioned place preference in behavioral neuroscience research: an investigation of alcohol administration in model organisms // Impulse (Columbia, SC). 2011.
  106. Lucki I. The spectrum of behaviors influenced by serotonin // Biological psychiatry. 1998. V. 44. № 3. P. 151.
  107. Lucon-Xiccato T., Dadda M. Assessing memory in zebrafish using the one-trial test // Behavioural processes. 2014. V. 106. P. 1.
  108. Lundegaard P.R., Anastasaki C., Grant N.J. et al. MEK inhibitors reverse cAMP-mediated anxiety in zebrafish // Chemistry & Biology. 2015. V. 22. № 10. P. 1335.
  109. Ma P.M. Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus // J. of Comparative Neurology. 1994. V. 344. № 2. P. 242.
  110. Ma P.M. Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus // Journal of Comparative Neurology. 1994. V. 344. № 2. P. 256.
  111. Magno L.D.P., Fontes A., Gonçalves B.M.N., Gouveia Jr.A. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration // Pharmacology Biochemistry and Behavior. 2015. V. 135. P. 169.
  112. Mann K.D., Hoyt C., Feldman S., Blunt L., Raymond A., Page-McCaw P.S. Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components // American J. of Physiology-Regulatory, Integr. and Compar. Physiology. 2010. V. 298. № 5. P. 1288.
  113. Marcon M., Herrmann A.P., Mocelin R. et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline // Psychopharmacology. 2016. V. 233. № 21. P. 3815.
  114. Martín I., Gómez A., Salas C., Puerto A., Rodríguez F. Dorsomedial pallium lesions impair taste aversion learning in goldfish // Neurobiology of Learning and Memory. 2011. V. 96. № 2. P. 297.
  115. Mathur P., Berberoglu M.A., Guo S. Preference for ethanol in zebrafish following a single exposure // Behav. Brain research. 2011. V. 217. № 1. P. 128.
  116. Mathur P., Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes // Neurobiology of disease. 2010. V. 40. № 1. P. 66.
  117. McCarroll M.N., Gendelev L., Keiser M.J., Kokel D. Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology // ACS chemical biology. 2016. V. 11. № 4. P. 842.
  118. McClure M., McIntyre P., McCune A. Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio // Journal of Fish Biology. 2006. V. 69. № 2. P. 553.
  119. McLean D.L., Fetcho J.R. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish // J. of Comparative Neurology. 2004. V. 480. № 1. P. 38.
  120. Meyer A., Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions // Current opinion in cell biology. 1999. V. 11. № 6. P. 699.
  121. Mi G., Gao Y., Yan H. et al. l-Scoulerine attenuates behavioural changes induced by methamphetamine in zebrafish and mice // Behav. Brain research. 2016. V. 298. P. 97.
  122. Miyamoto S., Duncan G., Marx C., Lieberman J. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs // Molecular psychiatry. 2005. V. 10. № 1. P. 79.
  123. Moncada S., Nisticò G., Bagetta G., Higgs E. Nitric Oxide and the Cell: Proliferation, Differentiation, and Death: Princeton University Press. 2017.
  124. Mueller T., Dong Z., Berberoglu M.A., Guo S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei) // Brain research. 2011. V. 1381. P. 95.
  125. Mueller T., Guo S. The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods // J. of Comparative Neurology. 2009. V. 516. № 6. P. 553.
  126. Mueller T., Vernier P., Wullimann M.F. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse // J. of Comparative Neurology. 2006. V. 494. № 4. P. 620.
  127. Nagabhushana A., Mishra R.K. Finding clues to the riddle of sex determination in zebrafish // Journal of biosciences. 2016. V. 41. № 1. P. 145.
  128. Nechiporuk A., Finney J.E., Keating M.T., Johnson S.L. Assessment of polymorphism in zebrafish mapping strains // Genome Research. 1999. V. 9. № 1. P. 1231.
  129. Neelkantan N., Mikhaylova A., Stewart A.M. et al. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds // ACS chemical neuroscience. 2013. V. 4. № 8. P. 1137.
  130. Nery L.R., Eltz N.S., Hackman C., Fonseca R., Altenhofen S., Guerra H.N. et al. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium // PLoS One. 2014. V. 9. № 9. P. 105 862.
  131. Ng M.-C., Hsu C.-P., Wu Y.-J. et al. Effect of MK-801-induced impairment of inhibitory avoidance learning in zebrafish via inactivation of extracellular signal-regulated kinase (ERK) in telencephalon // Fish physiology and biochemistry. 2012. V. 38. № 4. P. 1099.
  132. Nguyen M., Stewart A.M., Kalueff A.V. Aquatic blues: modeling depression and antidepressant action in zebrafish // Progress in neuro-psychopharmacology and biological psychiatry. 2014. V. 55. P. 26.
  133. Ninkovic J., Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse // Methods. 2006. V. 39. № 3. P. 262.
  134. Ninkovic J., Folchert A., Makhankov Y.V. et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish // Journal of neurobiology. 2006. V. 66. № 5. P. 463.
  135. Norton W.H., Folchert A., Bally-Cuif L. Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain // Journal of Comparative Neurology. 2008. V. 511. № 4. P. 521.
  136. Pando M.P., Sassone-Corsi P. Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way // Bioessays. 2002. V. 24. № 5. P. 419.
  137. Pannia E., Tran S., Rampersad M., Gerlai R. Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: a time course analysis // Behav. Brain research. 2014. V. 259. P. 174.
  138. Pantelis C., Papadimitriou G.N., Papiol S. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421.
  139. Panula P., Chen Y.-C., Priyadarshini M. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases // Neurobiology of disease. 2010. V. 40. № 1. P. 46.
  140. Panula P., Sallinen V., Sundvik M. et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases // Zebrafish. 2006. V. 3. № 2. P. 235.
  141. Papke R.L., Ono F., Stokes C., Urban J.M., Boyd R.T. The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study // Biochemical pharmacology. 2012. V. 84. № 3. P. 352.
  142. Park E., Lee Y., Kim Y., Lee C.-J. Cholinergic modulation of neural activity in the telencephalon of the zebrafish // Neuroscience letters. 2008. V. 439. № 1. P. 79.
  143. Parker M.O., Evans A.M.D., Brock A.J., Combe F.J., Teh M.T., Brennan C.H. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood // Addiction biology. 2016. V. 21. № 1. P. 49.
  144. Parker M.O., Millington M.E., Combe F.J., Brennan C.H. Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio) // Behav. Brain research. 2012. V. 227. № 1. P. 73.
  145. Pavlidis M., Theodoridi A., Tsalafouta A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio // Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015. V. 60. P. 121.
  146. Peitsaro N., Sundvik M., Anichtchik O.V., Kaslin J., Panula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior // Biochemical pharmacology. 2007. V. 73. № 8. P. 1205.
  147. Pérez-Escudero A., Vicente-Page J., Hinz R.C., Arganda S., De Polavieja G.G. idTracker: tracking individuals in a group by automatic identification of unmarked animals // Nature methods. 2014. V. 11. № 7. P. 743.
  148. Petzold A.M., Balciunas D., Sivasubbu S. et al. Nicotine response genetics in the zebrafish // Proceedings of the National Academy of Sciences. 2009. V. 106. № 44. P. 18662.
  149. Piato A.L., Capiotti K.M., Tamborski A.R. et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses // Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011. V. 35. № 2. P. 561.
  150. Pittman J.T., Lott C.S. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors // Physiology & Behavior. 2014. V. 123. P. 174.
  151. Poon K.L., Richardson M., Lam C.S., Khoo H.E., Korzh V. Expression pattern of neuronal nitric oxide synthase in embryonic zebrafish // Gene Expression Patterns. 2003. V. 3. № 4. P. 463.
  152. Porsolt R.D. Animal models of depression: utility for transgenic research // Reviews in the Neurosciences. 2000. V. 11. № 1. P. 53.
  153. Portavella M., Torres B., Salas C. Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium // Journal of Neuroscience. 2004. V. 24. № 9. P. 2335.
  154. Postlethwait J.H., Yan Y.-L., Gates M.A. et al. Vertebrate genome evolution and the zebrafish gene map // Nature genetics. 1998. V. 18. № 4. P. 345.
  155. Purushothaman S., Saxena S., Meghah V. et al. Proteomic and gene expression analysis of zebrafish brain undergoing continuous light/dark stress // Journal of sleep research. 2015. V. 24. № 4. P. 458
  156. Rambo C.L., Mocelin R., Marcon M. et al. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress // Physiology & Behavior. 2017. V. 171. P. 50.
  157. Rankin C.H., Abrams T., Barry R.J., Bhatnagar S. et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation // Neurobiology of learning and memory. 2009. V. 92. № 2. P. 135.
  158. Rauch S.L., Whalen P.J., Shin L.M. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study // Biological psychiatry. 2000. V. 47. № 9. P. 769.
  159. Renier C., Faraco J.H., Bourgin P. et al. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish // Pharmacogenetics and genomics. 2007. V. 17. № 4. P. 237.
  160. Richendrfer H., Pelkowski S., Colwill R., Creton R. On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae // Behav. Brain research. 2012. V. 228. № 1. P. 99.
  161. Richetti S., Blank M., Capiotti K., Piato A., Bogo M., Vianna M. et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish // Behav. Brain Research. 2011. V. 217. № 1. P. 10.
  162. Rico E., Rosemberg D., Seibt K., Capiotti K., Da Silva R., Bonan C. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets // Neurotoxicology and teratology. 2011. V. 33. № 6. P. 608.
  163. Rico E.P., de Oliveira D.L., Rosemberg D.B. et al. Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain // Brain research bulletin. 2010. V. 81. № 4–5. P. 517.
  164. Rink E., Guo S. The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain // Neuroscience. 2004. V. 127. № 1. P. 147.
  165. Rosemberg D.B., Braga M.M., Rico E.P. et al. Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol // Neuropharmacology. 2012. V. 63. № 4. P. 613.
  166. Ruuskanen J.O., Xhaard H., Marjamäki A. et al. Identification of duplicated fourth α2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish // Molecular biology and evolution. 2004. V. 21. № 1. P. 14.
  167. Saverino C., Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish // Behav. Brain research. 2008. V. 191. № 1. P. 77.
  168. Schneider H., Fritzky., Williams J. et al. Cloning and expression of a zebrafish 5-HT2C receptor gene // Gene. 2012. V. 502. № 2. P. 108.
  169. Seibt K.J., da Luz Oliveira R., Bogo M.R., Senger M.R., Bonan C.D. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain // Fish physiology and biochemistry. 2015. V. 41. № 6. P. 1383.
  170. Seibt K.J., da Luz Oliveira R., Zimmermann F.F. et al. Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio) // Behav. Brain research. 2010. V. 214. № 2. P. 417.
  171. Seibt K.J., Piato A.L., da Luz Oliveira R., Capiotti K.M., Vianna M.R., Bonan C.D. Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio) // Behav. Brain research. 2011. V. 224. № 1. P. 135.
  172. Seligman M.E., Beagley G. Learned helplessness in the rat // J. of Comparative and physiological psychology. 1975. V. 88. № 2. P. 534.
  173. Seligman M.E., Rosellini R.A., Kozak M.J. Learned helplessness in the rat: time course, immunization, and reversibility // J. of Comparative and physiological psychology. 1975. V. 88. № 2. P. 542.
  174. Sessa A.K., White R., Houvras Y. et al. The effect of a depth gradient on the mating behavior, oviposition site preference, and embryo production in the zebrafish, Danio rerio // Zebrafish. 2008. V. 5. № 4. P. 335.
  175. Shin L.M., Rauch S.L., Pitman R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD // Annals of the New York Academy of Sciences. 2006. V. 1071. № 1. P. 67.
  176. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress // Dialogues in clinical neuroscience. 2022.
  177. Spence R., Fatema M., Ellis S., Ahmed Z., Smith C. Diet, growth and recruitment of wild zebrafish in Bangladesh // J. of Fish Biology. 2007. V. 71. № 1. P. 304.
  178. Spence R., Fatema M., Reichard M. et al. The distribution and habitat preferences of the zebrafish in Bangladesh // J. of Fish biology. 2006. V. 69. № 5. P. 1435.
  179. Spence R., Gerlach G., Lawrence C., Smith C. The behaviour and ecology of the zebrafish, Danio rerio // Biological Reviews. 2008. V. 83. № 1. P. 13
  180. Spence R., Smith C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance // Behavioral Ecology. 2006. V. 17. № 5. P. 779.
  181. Stewart A., Gaikwad S., Kyzar E., Green J., Roth A., Kalueff A.V. Modeling anxiety using adult zebrafish: a conceptual review // Neuropharmacology. 2012. V. 62. № 1. P. 135.
  182. Stewart A., Riehl R., Wong K. et al. Behavioral effects of MDMA (“Ecstasy”) on adult zebrafish // Behavioural pharmacology. 2011. V. 22. № 3. P. 275.
  183. Stewart A.M., Braubach O., Spitsbergen J., Gerlai R., Kalueff A.V. Zebrafish models for translational neuroscience research: from tank to bedside // Trends in neurosciences. 2014. V. 37. № 5. P. 264
  184. Stewart A.M., Gerlai R., Kalueff A.V. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery // Frontiers in behavioral neuroscience. 2015. V. 9. P. 14.
  185. Stewart A.M., Grieco F., Tegelenbosch R.A. et al. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes // Journal of neuroscience methods. 2015. V. 255. P. 66.
  186. Strüber N., Strüber D., Roth G. Impact of early adversity on glucocorticoid regulation and later mental disorders // Neuroscience & Biobehavioral Reviews. 2014. V. 38. P. 17.
  187. Sundvik M., Panula P. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters // J. of Comparative Neurology. 2012. V. 520. № 17. P. 3827.
  188. Swain H.A., Sigstad C., Scalzo F.M. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio) // Neurotoxicology and Teratology. 2004. V. 26. № 6. P. 725.
  189. Tay T.L., Ronneberger O., Ryu S., Nitschke R., Driever W. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems // Nature communications. 2011. V. 2. № 1. P. 1.
  190. Thompson R.F., Spencer W.A. Habituation: a model phenomenon for the study of neuronal substrates of behavior // Psychological review. 1966. V. 73. № 1. P. 16.
  191. Tolman E.C., Honzik C.H. Introduction and removal of reward, and maze performance in rats // Univers. of California public. in psychology. 1930.
  192. Tran S., Chatterjee D., Gerlai R. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio) // Behavioural brain research. 2015. V. 276. P. 161.
  193. Tran S., Gerlai R. Individual differences in activity levels in zebrafish (Danio rerio) // Behavioural brain research. 2013. V. 257. P. 224.
  194. Tran S., Gerlai R. Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio) // Behav. Brain research. 2013. V. 252. P. 204.
  195. Truong L., Mandrell D., Mandrell R., Simonich M., Tanguay R.L. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants // Neurotoxicology. 2014. V. 43. P. 134.
  196. Uchida D., Yamashita M., Kitano T., Iguchi T. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish // Journal of Experimental Biology. 2002. V. 205. № 6. P. 711.
  197. Uchida D., Yamashita M., Kitano T., Iguchi T. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal // Comparative Biochemistry and Physiology Part A. P. Molecular & Integrative Physiology. 2004. V. 137. № 1. P. 11.
  198. Van Eeden J., Cuppen E. Genetic variation in the zebrafish. 2006.
  199. Vatine G., Vallone D., Gothilf Y., Foulkes N.S. It’s time to swim! Zebrafish and the circadian clock // FEBS letters. 2011. V. 585. № 10. P. 1485.
  200. Volgin A.D., Yakovlev O.A., Demin K.A. et al. Zebrafish models for personalized psychiatry: insights from individual, strain and sex differences, and modeling gene x environment interactions // Journal of neuroscience research. 2019. V. 97. № 4. P. 402.
  201. Von Hofsten J., Olsson P.-E. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes // Reproductive Biology and Endocrinology. 2005. V. 3. № 1. P. 1.
  202. Von Trotha J.W., Vernier P., Bally-Cuif L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish // European Journal of Neuroscience. 2014. V. 40. № 9. P. 3302.
  203. Wahbeh H., Kishiyama S.S., Zajdel D., Oken B.S. Salivary cortisol awakening response in mild Alzheimer disease, caregivers, and noncaregivers // Alzheimer Disease & Associated Disorders. 2008. V. 22. № 2. P. 181.
  204. Wang H. Comparative analysis of period genes in teleost fish genomes // Journal of molecular evolution. 2008. V. 67. № 1. P. 29.
  205. Wang Y., Li S., Liu W. et al. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish // Biochemical and biophysical research communications. 2016. V. 470. № 4. P. 792.
  206. Wang Y., Takai R., Yoshioka H., Shirabe K. Characterization and expression of serotonin transporter genes in zebrafish // The Tohoku journal of experimental medicine. 2006. V. 208. № 3. P. 267.
  207. Whiteley A.R., Bhat A., Martins E.P. et al. Population genomics of wild and laboratory zebrafish (Danio rerio) // Molecular ecology. 2011. V. 20. № 20. P. 4259.
  208. Winger G., Woods J.H., Galuska C.M., Wade-Galuska T. Behavioral perspectives on the neuroscience of drug addiction // J. of the Experimental Analysis of Behavior. 2005. V. 84. № 3. P. 667.
  209. Winter M.J., Redfern W.S., Hayfield A.J., Owen S.F., Valentin J.-P., Hutchinson T.H. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs // J. of Pharmacological and toxicological Methods. 2008. V. 57. № 3. P. 176.
  210. Yamamoto K., Ruuskanen J.O., Wullimann M.F., Vernier P. Two tyrosine hydroxylase genes in vertebrates: new dopaminergic territories revealed in the zebrafish brain // Molecular and Cellular Neuroscience. 2010. V. 43. № 4. P. 394.
  211. Zhou Q.-G., Zhu L.-J., Chen C. et al. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor // Journal of Neuroscience. 2011. V. 31. № 21. P. 7579.
  212. Ziv L., Muto A., Schoonheim P.J. et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor // Molecular psychiatry. 2013. V. 18. № 6. P. 681.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1010KB)
3.

Жүктеу (1MB)

© Т.О. Колесникова, Н.П. Ильин, М.М. Котова, А.В. Калуев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>