Evaluation of the in vitro effectiveness of the Depantol components on biofilms produced by vaginal microorganisms

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Objective: To evaluate the in vitro effectiveness of the Depantol components on biofilms produced by vaginal microorganisms.

Materials and methods: The study examined 33 clinical isolates of pure cultures of microorganisms obtained from the vaginal biotope. The bacterial films were produced by the following microorganisms: G. vaginalis (2 isolates), E. coli (3 isolates), K. pneumoniae (3 isolates), K. piersonii (1 isolate), C. freundii (3 isolates), A. baumannii (3 isolates), S. agalactiae (3 isolates), E. faecalis (3 isolates), S. aureus (3 isolates), and yeast-like fungi of Candida (9 isolates).

Dense and liquid selective nutrient media were used for the study. Microorganisms were identified using MALDI-TOF mass spectrometry (Bruker Microflex). The ability of microorganisms to produce biofilms was assessed according to a modified protocol of Christensen et al. (1985).

The in vitro effectiveness of the Depantol components on biofilms was evaluated using different dilutions of the drug components (chlorhexidine bigluconate, dexpanthenol, macrogols).

Results: The biofilms of varying density were formed by all 33 clinical isolates. Dexpanthenol in tested concentrations and macrogol had no effect on biofilms. Chlorhexidine bigluconate 1% solution destroyed biofilms produced by most vaginal bacteria. These are primarily G. vaginalis (both isolates tested), all E. coli, the clinical isolate of K. piersonii, all E. faecalis, S. aureus and all isolates of yeast-like fungi of Candida spp., both C. albicans and C. non-albicans (C. parapsilosis and C. glabrata). The biofilm was destroyed in two of the three isolates of K. pneumoniae, C. freundii, A. baumannii, and S. agalactiae.

Conclusion: Among the Depantol components, chlorhexidine bigluconate 1% solution was 100% effective on bacterial films produced by Gardnerella vaginalis, Escherichia coli, Klebsiella piersonii, Enterococcus faecalis, Staphylococcus aureus and yeast-like fungi of Candida spp., both C. albicans and C. non-albicans (C. parapsilosis and C. glabrata). Its effectiveness was 70% for the other microorganisms.

作者简介

Kira Shalepo

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

编辑信件的主要联系方式.
Email: 2474151@mail.ru
ORCID iD: 0000-0002-3002-3874

PhD, Senior Researcher at the Department of Experimental Microbiology; Associate Professor at the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Elena Spasibova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: elena.graciosae@gmail.com
ORCID iD: 0009-0002-6070-4651

Bacteriologist at the Laboratory of Clinical Microbiology; Teaching Assistant at the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Olga Budilovskaya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: o.budilovskaya@gmail.com
ORCID iD: 0000-0001-7673-6274

PhD, Senior Researcher at the Department of Medical Microbiology; Teaching Assistant at the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Anna Krysanova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: krusanova.anna@mail.ru
ORCID iD: 0000-0003-4798-1881

PhD, Senior Researcher at the Department of Experimental Microbiology; Teaching Assistant at the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Tatiana Khusnutdinova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: husnutdinovat@yandex.ru
ORCID iD: 0000-0002-2742-2655

PhD, Senior Researcher at the Department of Experimental Microbiology; Teaching Assistant at the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Alexandra Cheberya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; S.M. Kirov Military Medical Academy

Email: alexa-vorobjeva.09@yandex.ru
ORCID iD: 0009-0008-1091-5753

Laboratory Assistant Researcher at Microbiology Laboratory; 6th-Year Student

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Alexander Cheberya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; S.M. Kirov Military Medical Academy

Email: sanekcheberya@yandex.ru
ORCID iD: 0009-0006-9058-6720

Laboratory Assistant Researcher at Microbiology Laboratory; 6th-Year Student

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Alevtina Savicheva

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: savitcheva@mail.ru
ORCID iD: 0000-0003-3870-5930

Dr. Med. Sci., Professor, Head of the Department of Medical Microbiology; Head of the Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Limoli D.H., Jones C.J., Wozniak D.J. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 2015; 3(3): 10.1128/microbiolspec.MB-0011-2014. https://dx.doi.org/10.1128/microbiolspec.MB-0011-2014.
  2. Atiencia-Carrera M.B., Cabezas-Mera F.S., Tejera E, Machado A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLoS One. 2022; 17(2): e0263522. https://dx.doi.org/10.1371/journal.pone.0263522.
  3. Cangui-Panchi S.P., Ñacato-Toapanta A.L., Enríquez-Martínez L.J., Reyes J., Garzon-Chavez D., Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: A systematic review. Curr. Res. Microb. Sci. 2022; 3: 100175. https://dx.doi.org/10.1016/ j.crmicr.2022.100175.
  4. Yin W., Wang Y., Liu L., He J. Biofilms: the microbial "Protective Clothing" in extreme environments. Int. J. Mol. Sci. 2019; 20(14): 3423. https:// dx.doi.org/10.3390/ijms20143423.
  5. Cangui-Panchi S.P., Ñacato-Toapanta A.L., Enríquez-Martínez L.J., Salinas-Delgado G.A., Reyes J., Garzon-Chavez D. et al. Battle royale: Immune response on biofilms - host-pathogen interactions. Curr. Res. Immunol. 2023; 4: 100057. https://dx.doi.org/10.1016/j.crimmu.2023.100057.
  6. Ciarolla A.A., Lapin N., Williams D., Chopra R., Greenberg D.E. Physical approaches to prevent and treat bacterial biofilm. Antibiotics (Basel). 2022; 12(1): 54. https://dx.doi.org/10.3390/antibiotics12010054.
  7. Hall-Stoodley L., Stoodley P., Kathju S., Høiby N., Moser C., Costerton J.W. et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol. Med. Microbiol. 2012; 65(2): 127-45. https://dx.doi.org/10.1111/j.1574-695X.2012.00968.x.
  8. Lebeaux D., Chauhan A., Rendueles O., Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013; 2(2): 288-356. https://dx.doi.org/10.3390/pathogens2020288.
  9. Bjarnsholt T., Ciofu O., Molin S., Givskov M., Høiby N. Applying insights from biofilm biology to drug development - can a new approach be developed?. Nat. Rev. Drug Discov. 2013; 12(10): 791-808. https://dx.doi.org/10.1038/nrd4000.
  10. Swidsinski A., Mendling W., Loening-Baucke V., Swidsinski S., Dörffel Y., Scholze J. et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol. 2008; 198(1): 97.e1-6.1. https://dx.doi.org/10.1016/j.ajog.2007.06.039.
  11. Machado A., Jefferson K.K., Cerca N. Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation. Int. J. Mol. Sci. 2013; 14(6): 12004-12. https://dx.doi.org/10.3390/ijms140612004.
  12. Савичева А.М., Крысанова А.А., Шалепо К.В., Спасибова Е.В., Будиловская О.В., Хуснутдинова Т.А., Тапильская Н.И., Коган И.Ю., Свидзинский А.В., Свидзинская С. Применение метода флуоресцентной гибридизации in situ в диагностике бактериального вагиноза. Акушерство и гинекология. 2023; 12: 68-77. [Savicheva A.M., Krysanova A.A., Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Khusnutdinova T.A., Tapilskaya N.I., Kogan I.Yu., Swidsinski A.V., Swidsinski S. Application of fluorescent in situ hybridization in the diagnosis of bacterial vaginosis. Obstetrics and Gynecology. 2023; (12): 68-77. (in Russian)]. https://dx.doi.org/10.18565aig.2023.129.
  13. Савичева А.М., Спасибова Е.В., Шалепо К.В. Исследование чувствительности Streptococcus agalactiae, выделенных из урогенитального тракта, к действующим веществам, входящим в состав препарата «Депантол». Российский вестник акушера-гинеколога. 2017; 17(6): 96-100. [Savicheva A.M., Spasibova E.V., Shalepo K.V. Investigation of the sensitivity of Streptococcus agalactiae isolated from the urogenital tract to the active substances included in the composition of Depantol. Russian Bulletin of Obstetrician-Gynecologist. 2017; 17(6): 96-100. (in Russian)]. https://dx.doi.org/10.17116/rosakush201717696-100.
  14. Gristina A.G., Costerton J.W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J. Bone Joint Surg. Am. 1985; 67: 264-73.
  15. LaFleur M.D., Kumamoto C.A., Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 2006; 50(11): 3839-46. https://dx.doi.org/10.1128/AAC.00684-06.
  16. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001; 45(4): 999-1007. https://dx.doi.org/10.1128/AAC.45.4.999-1007.2001.
  17. Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect. Microbiol. 2023; 13: 1137947. https://dx.doi.org/10.3389/fcimb.2023.1137947.
  18. Шалепо К.В., Михайленко Т.Г., Савичева А.М. Роль бактериальных пленок в формировании хронических патологических процессов во влагалище и эндометрии. Журнал акушерства и женских болезней. 2016; 65(4): 65-75. [Shalepo K.V., Mihailenko T.G., Savicheva A.M. The role of bacterial biofilms in the development of chronic pathological processes in the vagina and endometrium. Journal of Obstetrics and Women's Diseases. 2016; 65(4): 65-75. (in Russian)]. https://dx.doi.org/10.17816/ JOWD65465-75.
  19. Wang S., Zhao Y., Breslawec A.P., Liang T., Deng Z., Kuperman L.L. et al. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes. 2023; 9(1): 63. https://dx.doi.org/10.1038/s41522-023-00427-y.
  20. Harris J.B., Monir R.L., Schoch J.J. Chlorhexidine gluconate for antisepsis in preterm neonates: A review of safety and efficacy. Pediatr. Dermatol. 2024; 41(5): 786-92. https://dx.doi.org/10.1111/pde.15709.
  21. Sionov R.V., Steinberg D. Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms. 2022; 10(6): 1239. https://dx.doi.org/10.3390/microorganisms10061239.
  22. Shen Y., Stojicic S., Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J. Endod. 2011; 37(5): 657-61. https://dx.doi.org/10.1016/j.joen.2011.02.007.
  23. Alvendal C., Mohanty S., Bohm-Starke N., Brauner A. Anti-biofilm activity of chlorhexidine digluconate against Candida albicans vaginal isolates. PLoS One. 2020; 15(9): e0238428. https://dx.doi.org/10.1371/journal.pone.0238428.
  24. Kramer A., Assadian O., Koburger-Janssen T. Antimicrobial efficacy of the combination of chlorhexidine digluconate and dexpanthenol. GMS Hyg. Infect. Control. 2016; 11: Doc24. https://dx.doi.org/10.3205/ dgkh000284.

补充文件

附件文件
动作
1. JATS XML
2. Figure. The effect of 1% chlorhexidine bigluconate solution included in the preparation ‘Depantol’ on biofilms formed by clinical isolates of vaginal microorganisms involved in the experiment

下载 (757KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».