The levels of oxidative stress markers in maternal and umbilical cord blood of pregnant women with diabetes mellitus in terms of blood flow redistribution in the fetal venous system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Oxidative stress is a significant contributing factor in the development of congenital anomalies, morbidity, and mortality in newborns during pregnancies complicated by diabetes mellitus. Alterations in the antioxidant system that occur during this process, along with transformations of the fetal venous circulation, represent crucial adaptive mechanisms of the developing organism to adverse conditions in the intrauterine environment.

Objective: To examine the levels of oxidative stress markers in pregnant women with pregestational diabetes mellitus (type 1 or 2 diabetes mellitus) in relation to the redistribution of blood flow in the fetal venous system, compared to a control group.

Materials and methods: A prospective study was conducted in the D.O. Ott Research Institute for OG&R from February 2022 to September 2023. The study included 70 women divided into the following groups: Group I included pregnant women with pregestational diabetes mellitus and a ductus venosus shunt fraction ≤16.5% (n=22); Group II included women with pregestational diabetes mellitus and a ductus venosus shunt fraction >16.5% (n=24); and Group III, the control group (n=24). The levels of 3-nitrotyrosine, malondialdehyde, catalase activity, and total antiradical activity were determined in maternal and cord blood serum at 37–41 weeks of pregnancy. Ultrasound examination was also performed to assess venous hemodynamics in the vessels of the umbilical portal venous system of the fetus.

Results: The threshold level for the redistribution of highly oxygenated blood in the ductus venosus to the fetal brain and heart was 16.5%. Analysis of oxidative stress markers in patients with pregestational diabetes mellitus based on the shunt fraction in the ductus venosus showed a significant increase in the levels of 3-nitrotyrosine and malondialdehyde in the group with a reduced shunt fraction in the ductus venosus (≤16.5%) compared to the control group and the group of women with a normal shunt fraction in the ductus venosus (>16.5%). The levels of catalase and antiradical activity were significantly increased in women in the group with a normal shunt fraction in the ductus venosus and remained unchanged compared to the control group in the group with a reduced fraction.

Conclusion: The study results indicate that oxidative stress is induced in patients with pregestational diabetes mellitus, accompanied by a decrease in the shunt fraction in the ductus venosus. This associated change reflects a violation of the compensatory capabilities of the fetus, aimed primarily at preserving the structure and function of the newborn brain. This may underlie the pathogenesis of irreversible changes in the formation and development of the fetal nervous system during pregnancy complicated by diabetes mellitus.

About the authors

Irina V. Zaloznyaya

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Author for correspondence.
Email: irinabiolog2012@yandex.ru
ORCID iD: 0000-0002-0576-9690
SPIN-code: 2488-3790

PhD in Biology

Russian Federation, Saint Petersburg

Ekaterina V. Kopteeva

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407
Russian Federation, Saint Petersburg

Yulia P. Milyutina

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312
SPIN-code: 6449-5635

PhD in Biology

Russian Federation, Saint Petersburg

Andrey V. Korenevsky

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: a.korenevsky@yandex.ru
ORCID iD: 0000-0002-0365-8532
SPIN-code: 7942-6016

Dr. Bio. Sci.

Russian Federation, Saint Petersburg

Alexander V. Arutyunyan

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: alexarutiunjan@gmail.com
ORCID iD: 0000-0002-0608-9427
SPIN-code: 9938-5277

Dr. Bio. Sci., Professor

Russian Federation, Saint Petersburg

Elizaveta V. Shelaeva

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555

PhD

Russian Federation, Saint Petersburg

Roman V. Kapustin

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260

Dr. Med. Sci.

Russian Federation, Saint Petersburg

Igor Yu. Kogan

D.O. Ott Research Institute for Obstetrics, Gynecology and Reproductology

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

Dr. Med. Sci., Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

References

  1. Reece E.A. Diabetes-induced birth defects: what do we know? What can we do? Curr. Diab. Rep. 2012; 12(1): 24-32. https://dx.doi.org/10.1007/ s11892-011-0251-6.
  2. Vento M. Oxidative stress in the perinatal period. Free Radic. Biol. Med. 2019; 142: 1-2. https://dx.doi.org/10.1016/j.freeradbiomed.2019.07.028.
  3. Jozwik M., Wolczynski S., Jozwik M., Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol. Hum. Reprod. 1999; 5(5): 409-13. https://dx.doi.org/10.1093/molehr/5.5.409.
  4. Скрипниченко Ю.П., Пятаева С.В, Володина М.А., Цвиркун Д.В., Баранов И.И., Высоких М.Ю., Кузьмич И.Н. Особенности течения окислительно-восстановительных реакций в крови у женщин с физиологически протекающей и осложненной беременностью. Акушерство и гинекология. 2017; 8: 60-6. [Skripnichenko Yu.P., Pyataeva S.V., Volodina M.A., Tsvirkun D.V., Baranov I.I., Vysokikh M.Yu., Kuz’mich I.N. Specific features of redox reactions in the blood of women with physiological or complicated pregnancy. Obstetrics and Gynecology. 2017; (8): 60-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.8.60-6.
  5. Ma H., Qiao Z., Li N., Zhao Y., Zhang S. The relationship between changes in vitamin A, vitamin E, and oxidative stress levels, and pregnancy outcomes in patients with gestational diabetes mellitus. Ann. Palliat. Med. 2021; 10(6): 6630-6. https://dx.doi.org/10.21037/apm-21-1036.
  6. Guérin P., El Mouatassim S., Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 2001; 7(2): 175-89. https://dx.doi.org/10.1093/humupd/7.2.175.
  7. Dennery P.A. Role of redox in fetal development and neonatal diseases. Antioxid. Redox Signal. 2004; 6(1): 147-53. https:// dx.doi.org/10.1089/152308604771978453.
  8. Peuchant E., Brun J.L., Rigalleau V., Dubourg L., Thomas M.J., Daniel J.Y. et al. Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin. Biochem. 2004; 37(4): 293-8. https://dx.doi.org/10.1016/ j.clinbiochem.2003.12.005.
  9. Pacher P., Obrosova I.G., Mabley J.G., Szabó C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 2005; 12(3): 267-75. https:// dx.doi.org/10.2174/0929867053363207.
  10. Djordjevic A., Spasic S., Jovanovic-Galovic A., Djordjevic R., Grubor-Lajsic G. Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation products. J. Matern. Fetal Neonatal Med. 2004; 16(6): 367-72. https://dx.doi.org/10.1080/14767050400018270.
  11. Aouache R., Biquard L., Vaiman D., Miralles F. Oxidative stress in preeclampsia and placental diseases. Int. J. Mol. Sci. 2018; 19(5): 1496. https:// dx.doi.org/10.3390/ijms19051496.
  12. Márquez-Valadez B., Valle-Bautista R., García-López G., Díaz N.F., Molina-Hernández A. Maternal diabetes and fetal programming toward neurological diseases: beyond neural tube defects. Front. Endocrinol. (Lausanne). 2018; 9: 664. https://dx.doi.org/10.3389/fendo.2018.00664.
  13. Ornoy A., Reece E.A., Pavlinkova G., Kappen C., Miller R.K. Effect of maternal diabetes on the embryo, fetus, and children: congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res. C Embryo Today. 2015; 105(1): 53-72. https://dx.doi.org/10.1002/bdrc.21090.
  14. Kiserud T., Kessler J., Ebbing C., Rasmussen S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet. Gynecol. 2006; 28(2): 143-9. https://dx.doi.org/10.1002/uog.2784.
  15. Ярыгина Т.А., Гасанова Р.М., Марзоева О.В., Сыпченко Е.В., Гус А.И. Все о венозном протоке - в помощь практикующим специалистам. Акушерство и гинекология. 2023; 9: 22-32. [Yarygina T.A., Gasanova R.M., Marzoeva O.V., Sypchenko E.V., Gus A.I. All that practitioners should know about ductus venosus. Obstetrics and Gynecology. 2023; (9): 22-32. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.127.
  16. Godfrey K.M., Haugen G., Kiserud T., Inskip H.M., Cooper C., Harvey N.C. et al.; Southampton Women's Survey Study Group; Hanson MA. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012; 7(8): e41759. https://dx.doi.org/10.1371/journal.pone.0041759.
  17. Lund A., Ebbing C., Rasmussen S., Kiserud T., Kessler J. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet. Gynecol. Scand. 2018; 97(8): 1032-40. https://dx.doi.org/10.1111/aogs.13363.
  18. Behrman H.R., Kodaman P.H., Preston S.L., Gao S. Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 2001; 8(1 Suppl. Proceedings): S40-S42. https://dx.doi.org/10.1016/s1071-5576(00)00106-4.
  19. Коптеева Е.В., Шелаева Е.В., Алексеенкова Е.Н., Капустин Р.В., Коган И.Ю. Особенности гемодинамики в умбиликально-портальной венозной системе плода при беременности, осложненной сахарным диабетом. Журнал акушерства и женских болезней. 2024; 73(2): 27-41. [Kopteeva E.V., Shelaeva E.V., Alekseenkova E.N., Kapustin R.V., Kogan I.Yu. Blood flow redistribution in the fetal umbilical-portal venous system in pregnancy complicated by diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2024; 73(2): 27-41. (in Russian)]. https:// dx.doi.org/10.17816/JOWD625384.
  20. Шелаева Е.В., Коптеева Е.В., Алексеенкова Е.Н., Капустин Р.В., Коган И.Ю. Роль умбилико-портальной венозной гемодинамики в патогенезе макросомии плода при беременности, осложненной сахарным диабетом. Журнал акушерства и женских болезней. 2024; 73(3): 89-104. [Shelaeva E.V., Kopteeva E.V., Alekseenkova E.N., Kapustin R.V., Kogan I.Yu. The role of umbilical-portal venous hemodynamics in fetal macrosomia pathogenesis in pregnancy complicated by diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2024; 73(3): 89-104. (in Russian)]. https://dx.doi.org/10.17816/JOWD629597.
  21. Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987; 33(1): 118-22. [Gavrilov V.B., Gavrilova A.R., Mazhul' L.M. Methods of determining lipid peroxidation products in the serum using a thiobarbituric acid test. Voprosy Meditsinskoi Khimii. 1987; 33(1): 118-22. (in Russian)].
  22. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 1991; 196(2-3): 143-51. https://dx.doi.org/10.1016/0009-8981(91)90067-m.
  23. Евсюкова И.И., Арутюнян А.В., Ковалевская О.В., Прокопенко В.М., Опарина Т.И., Додхоев Д.С. Интенсивность свободнорадикального окисления и состояние антиоксидантной системы у новорожденных детей, развивавшихся в условиях хронической плацентарной недостаточности. Журнал акушерства и женских болезней. 2007; 56(3): 50-5. [Evsyukova I.I., Arutyunyan A.V., Kovalevskaya O.V., Prokopenko V.M., Oparina T.I., Dodkhoev D.S. The intensity of free radical oxidation and antioxidant system state in the newborn after chronic placental deficiency. Journal of Obstetrics and Women’s Diseases. 2007; 56(3): 50-5. (in Russian)].
  24. Mentese A., Güven S., Demir S., Sümer A., Yaman S.Ö., Alver A. et al. Circulating parameters of oxidative stress and hypoxia in normal pregnancy and HELLP syndrome. Adv. Clin. Exp. Med. 2018; 27(11): 1567-72. https://dx.doi.org/ 10.17219/acem/74653.
  25. Kapustin R., Chepanov S., Kopteeva E., Arzhanova O. Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus. Gynecol. Endocrinol. 2020; 36(Supp1. 1): S36-S42. https://dx.doi.org/10.1080/09513590.2020.1816727.
  26. Grissa O., Atègbo J.M., Yessoufou A., Tabka Z., Miled A., Jerbi M. et al. Antioxidant status and circulating lipids are altered in human gestational diabetes and macrosomia. Transl. Res. 2007; 150(3): 164-71. https:// dx.doi.org/10.1016/j.trsl.2007.03.007.
  27. Quijano C., Hernandez-Saavedra D., Castro L., McCord J.M., Freeman B.A., Radi R. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 2001; 276(15): 11631-8. https://dx.doi.org/10.1074/jbc.M009429200.
  28. Horváth E.M., Magenheim R., Kugler E., Vácz G., Szigethy A., Lévárdi F. et al. Nitrative stress and poly(ADP-ribose) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia. 2009; 52(9): 1935-43. https://dx.doi.org/10.1007/s00125-009-1435-3.
  29. Biri A., Onan A., Devrim E., Babacan F., Kavutcu M., Durak I. Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes. Placenta. 2006; 27(2-3): 327-32. https://dx.doi.org/10.1016/j.placenta.2005.01.002.
  30. Lappas M., Permezel M., Ho P.W., Moseley J.M., Wlodek M.E., Rice G.E. Effect of nuclear factor-kappa B inhibitors and peroxisome proliferator-activated receptor-gamma ligands on PTHrP release from human fetal membranes. Placenta. 2004; 25(8-9): 699-704. https://dx.doi.org/10.1016/ j.placenta.2004.02.003.
  31. López-Tinoco C., Roca M., García-Valero A., Murri M., Tinahones F.J., Segundo C. et al. Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. Acta Diabetol. 2013; 50(2): 201-8. https://dx.doi.org/10.1007/s00592-011-0264-2.
  32. Orhan H., Onderoglu L., Yücel A., Sahin G. Circulating biomarkers of oxidative stress in complicated pregnancies. Arch. Gynecol. Obstet. 2003; 267(4): 189-95. https://dx.doi.org/10.1007/s00404-002-0319-2.
  33. Desoye G., Carter A.M. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat. Rev. Endocrinol. 2022; 18(10): 593-607. https://dx.doi.org/10.1038/s41574-022-00717-z.
  34. Tchirikov M., Schröder H.J., Hecher K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet. Gynecol. 2006; 27(4): 452-61. https:// dx.doi.org/10.1002/uog.2747.
  35. Tchirikov M., Kertschanska S., Schröder H.J. Differential effects of catecholamines on vascular rings from ductus venosus and intrahepatic veins of fetal sheep. J. Physiol. 2003; 548(Pt. 2): 519-26. https://dx.doi.org/10.1113/jphysiol.2002.034470.
  36. Manoharan B., Bobby Z., Dorairajan G., Jacob S.E., Gladwin V., Vinayagam V. et al. Increased placental expressions of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes in gestational diabetes: protective mechanisms against the placental oxidative stress? Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 238: 78-85. https://dx.doi.org/10.1016/j.ejogrb.2019.05.016.
  37. Skoko J.J., Wakabayashi N., Noda K., Kimura S., Tobita K., Shigemura N. et al. Loss of Nrf2 in mice evokes a congenital intrahepatic shunt that alters hepatic oxygen and protein expression gradients and toxicity. Toxicol. Sci. 2014; 141(1): 112-9. https://dx.doi.org/10.1093/toxsci/kfu109.
  38. Jin Y., Wang G., Han S.S., He M.Y., Cheng X., Ma Z.L. et al. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model. Exp. Cell Res. 2016; 347(1): 201-11. https://dx.doi.org/10.1016/ j.yexcr.2016.08.002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Study design

Download (640KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».