Two Bilinear (3 × 3)-Matrix Multiplication Algorithms of Complexity 25


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

As is known, a bilinear algorithm for multiplying 3 × 3 matrices can be constructed by using ordered triples of 3 × 3 matrices Aρ, Bρ, Cρ, \(\rho = \overline {1,r} ,\) where r is the complexity of the algorithm. Algorithms with various symmetries are being extensively studied. This paper presents two algorithms of complexity 25 possessing the following two properties (symmetries): (1) the matricesA1,B1, and C1 are identity, (2) if the algorithm involves a tripleA, B, C, then it also involves the triples B, C, A and C, A, B. For example, these properties are inherent in the well-known Strassen algorithm for multiplying 2 × 2 matrices. Many existing (3 × 3)-matrix multiplication algorithms have property (2). Methods for finding new algorithms are proposed. It is shown that the found algorithms are different and new.

作者简介

B. Chokaev

Faculty of Computational Mathematics and Computer Technologies

编辑信件的主要联系方式.
Email: g110@yandex.ru
俄罗斯联邦, Groznyi, Chechen Republic, 364093

G. Shumkin

Department of Computational Mathematics and Cybernetics

Email: g110@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018