Two Bilinear (3 × 3)-Matrix Multiplication Algorithms of Complexity 25


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

As is known, a bilinear algorithm for multiplying 3 × 3 matrices can be constructed by using ordered triples of 3 × 3 matrices Aρ, Bρ, Cρ, \(\rho = \overline {1,r} ,\) where r is the complexity of the algorithm. Algorithms with various symmetries are being extensively studied. This paper presents two algorithms of complexity 25 possessing the following two properties (symmetries): (1) the matricesA1,B1, and C1 are identity, (2) if the algorithm involves a tripleA, B, C, then it also involves the triples B, C, A and C, A, B. For example, these properties are inherent in the well-known Strassen algorithm for multiplying 2 × 2 matrices. Many existing (3 × 3)-matrix multiplication algorithms have property (2). Methods for finding new algorithms are proposed. It is shown that the found algorithms are different and new.

Авторлар туралы

B. Chokaev

Faculty of Computational Mathematics and Computer Technologies

Хат алмасуға жауапты Автор.
Email: g110@yandex.ru
Ресей, Groznyi, Chechen Republic, 364093

G. Shumkin

Department of Computational Mathematics and Cybernetics

Email: g110@yandex.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018