Machine learning methods for analyzing user behavior when accessing text data in information security problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new method for detecting user access to irrelevant documents based on estimating the document text membership in typical subject areas of the analyzed user is proposed. The typical subject areas are formed using subject area modeling implemented via orthonormal nonnegative matrix factorization. An experimental study with real corporate correspondence formed from an Enron data set demonstrates the high classification accuracy of the proposed method, compared to traditional approaches.

Sobre autores

I. Mashechkin

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: mash@cs.msu.su
Rússia, Moscow, 119991

M. Petrovskii

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
Rússia, Moscow, 119991

D. Tsarev

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016