Machine learning methods for analyzing user behavior when accessing text data in information security problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new method for detecting user access to irrelevant documents based on estimating the document text membership in typical subject areas of the analyzed user is proposed. The typical subject areas are formed using subject area modeling implemented via orthonormal nonnegative matrix factorization. An experimental study with real corporate correspondence formed from an Enron data set demonstrates the high classification accuracy of the proposed method, compared to traditional approaches.

作者简介

I. Mashechkin

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: mash@cs.msu.su
俄罗斯联邦, Moscow, 119991

M. Petrovskii

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
俄罗斯联邦, Moscow, 119991

D. Tsarev

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016