Machine learning methods for analyzing user behavior when accessing text data in information security problems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new method for detecting user access to irrelevant documents based on estimating the document text membership in typical subject areas of the analyzed user is proposed. The typical subject areas are formed using subject area modeling implemented via orthonormal nonnegative matrix factorization. An experimental study with real corporate correspondence formed from an Enron data set demonstrates the high classification accuracy of the proposed method, compared to traditional approaches.

Авторлар туралы

I. Mashechkin

Department of Computational Mathematics and Cybernetics

Хат алмасуға жауапты Автор.
Email: mash@cs.msu.su
Ресей, Moscow, 119991

M. Petrovskii

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
Ресей, Moscow, 119991

D. Tsarev

Department of Computational Mathematics and Cybernetics

Email: mash@cs.msu.su
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016