Machine learning methods for analyzing user behavior when accessing text data in information security problems
- Авторлар: Mashechkin I.V.1, Petrovskii M.I.1, Tsarev D.V.1
-
Мекемелер:
- Department of Computational Mathematics and Cybernetics
- Шығарылым: Том 40, № 4 (2016)
- Беттер: 179-184
- Бөлім: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176155
- DOI: https://doi.org/10.3103/S0278641916040051
- ID: 176155
Дәйексөз келтіру
Аннотация
A new method for detecting user access to irrelevant documents based on estimating the document text membership in typical subject areas of the analyzed user is proposed. The typical subject areas are formed using subject area modeling implemented via orthonormal nonnegative matrix factorization. An experimental study with real corporate correspondence formed from an Enron data set demonstrates the high classification accuracy of the proposed method, compared to traditional approaches.
Авторлар туралы
I. Mashechkin
Department of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: mash@cs.msu.su
Ресей, Moscow, 119991
M. Petrovskii
Department of Computational Mathematics and Cybernetics
Email: mash@cs.msu.su
Ресей, Moscow, 119991
D. Tsarev
Department of Computational Mathematics and Cybernetics
Email: mash@cs.msu.su
Ресей, Moscow, 119991
Қосымша файлдар
