On the Complexity and Depth of Embedded in Boolean Cube Circuits That Implement Boolean Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A class of circuits of functional elements over the standard basis of the conjunction, disjunction, and negation elements is considered. For each circuit Σ in this class, its depth D(Σ) and dimension R(Σ) equal to the minimum dimension of the Boolean cube allowing isomorphic embedding Σ are defined. It is established that for n = 1, 2,… and an arbitrary Boolean function f of n variables there exists a circuit Σf for implementing this function such that Rf) ⩽ n − log2 log2n + O(1) and Df) ⩽ 2n − 2 log2 log2n + O(1). It is proved that for n = 1, 2,… almost all functions of n variables allow implementation by circuits of the considered type, whose depth and dimension differ from the minimum values of these parameters (for all equivalent circuits) by no more than a constant and asymptotically no more than by a factor of 2, respectively.

Sobre autores

S. Lozhkin

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: lozhkin@cmc.msu.ru
Rússia, Moscow, 119991

E. Dovgalyuk

Department of Computational Mathematics and Cybernetics

Email: lozhkin@cmc.msu.ru
Rússia, Moscow, 119991

O. Sadovnikov

Department of Computational Mathematics and Cybernetics

Email: lozhkin@cmc.msu.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018