On the Complexity and Depth of Embedded in Boolean Cube Circuits That Implement Boolean Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A class of circuits of functional elements over the standard basis of the conjunction, disjunction, and negation elements is considered. For each circuit Σ in this class, its depth D(Σ) and dimension R(Σ) equal to the minimum dimension of the Boolean cube allowing isomorphic embedding Σ are defined. It is established that for n = 1, 2,… and an arbitrary Boolean function f of n variables there exists a circuit Σf for implementing this function such that Rf) ⩽ n − log2 log2n + O(1) and Df) ⩽ 2n − 2 log2 log2n + O(1). It is proved that for n = 1, 2,… almost all functions of n variables allow implementation by circuits of the considered type, whose depth and dimension differ from the minimum values of these parameters (for all equivalent circuits) by no more than a constant and asymptotically no more than by a factor of 2, respectively.

作者简介

S. Lozhkin

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: lozhkin@cmc.msu.ru
俄罗斯联邦, Moscow, 119991

E. Dovgalyuk

Department of Computational Mathematics and Cybernetics

Email: lozhkin@cmc.msu.ru
俄罗斯联邦, Moscow, 119991

O. Sadovnikov

Department of Computational Mathematics and Cybernetics

Email: lozhkin@cmc.msu.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018