On Bilinear Complexity of Multiplying 2 × 2-Matrix by 2 × m-Matrix over Finite Field


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of the least number of multiplications required to compute the product of a 2 × 2-matrix X and a 2 × m-matrix Y over an arbitrary finite field is considered by assuming that the elements of the matrices are independent variables. No commutativity of elements of matrix X with elements of matrix Y is assumed (i.e., bilinear complexity is considered). Upper bound \(\frac{{7m}}{2}\) for this problem over an arbitrary field is known. For two-element field, this bound is exact. Lower bound (3 + \(\frac{3}{{{K^2} + 2}}\)) m is obtained for the least number of multiplications in this problem over an arbitrary finite field with K elements.

Sobre autores

V. Alekseev

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: vbalekseev@rambler.ru
Rússia, Moscow, 119991

A. Nazarov

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: nazarovandry2@mail.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019