On Bilinear Complexity of Multiplying 2 × 2-Matrix by 2 × m-Matrix over Finite Field


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The problem of the least number of multiplications required to compute the product of a 2 × 2-matrix X and a 2 × m-matrix Y over an arbitrary finite field is considered by assuming that the elements of the matrices are independent variables. No commutativity of elements of matrix X with elements of matrix Y is assumed (i.e., bilinear complexity is considered). Upper bound \(\frac{{7m}}{2}\) for this problem over an arbitrary field is known. For two-element field, this bound is exact. Lower bound (3 + \(\frac{3}{{{K^2} + 2}}\)) m is obtained for the least number of multiplications in this problem over an arbitrary finite field with K elements.

Об авторах

V. Alekseev

Department of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: vbalekseev@rambler.ru
Россия, Moscow, 119991

A. Nazarov

Department of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: nazarovandry2@mail.ru
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).