Selecting the Superpositioning of Models for Railway Freight Forecasting


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of selecting the optimum system of models for forecasting short-term railway traffic volumes is considered. The historical data is the daily volume of railway traffic between pairs of stations for different types of cargo. The given time series are highly volatile, noisy, and nonstationary. A system is proposed that selects the optimum superpositioning of forecasting models with respect to features of the historical data. A model of sliding averages, exponential and kernel-smoothing models, the ARIMA model, Croston’s method, and LSTM neural networks are considered as candidates for inclusion in superpositioning.

Sobre autores

N. Uvarov

Faculty of Applied Mathematics and Control

Autor responsável pela correspondência
Email: nikita.uvarov@phystech.edu
Rússia, Moscow, 141701

M. Kuznetsov

Yahoo! Research

Email: nikita.uvarov@phystech.edu
Estados Unidos da América, New York, NY, 10018

A. Malkova

Faculty of Applied Mathematics and Control

Email: nikita.uvarov@phystech.edu
Rússia, Moscow, 141701

K. Rudakov

Department of Computer Science

Email: nikita.uvarov@phystech.edu
Rússia, Moscow, 119991

V. Strijov

Federal Research Center “Computer Science and Control,”

Email: nikita.uvarov@phystech.edu
Rússia, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018