Selecting the Superpositioning of Models for Railway Freight Forecasting


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of selecting the optimum system of models for forecasting short-term railway traffic volumes is considered. The historical data is the daily volume of railway traffic between pairs of stations for different types of cargo. The given time series are highly volatile, noisy, and nonstationary. A system is proposed that selects the optimum superpositioning of forecasting models with respect to features of the historical data. A model of sliding averages, exponential and kernel-smoothing models, the ARIMA model, Croston’s method, and LSTM neural networks are considered as candidates for inclusion in superpositioning.

Авторлар туралы

N. Uvarov

Faculty of Applied Mathematics and Control

Хат алмасуға жауапты Автор.
Email: nikita.uvarov@phystech.edu
Ресей, Moscow, 141701

M. Kuznetsov

Yahoo! Research

Email: nikita.uvarov@phystech.edu
АҚШ, New York, NY, 10018

A. Malkova

Faculty of Applied Mathematics and Control

Email: nikita.uvarov@phystech.edu
Ресей, Moscow, 141701

K. Rudakov

Department of Computer Science

Email: nikita.uvarov@phystech.edu
Ресей, Moscow, 119991

V. Strijov

Federal Research Center “Computer Science and Control,”

Email: nikita.uvarov@phystech.edu
Ресей, Moscow, 119333

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018