Selecting the Superpositioning of Models for Railway Freight Forecasting


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of selecting the optimum system of models for forecasting short-term railway traffic volumes is considered. The historical data is the daily volume of railway traffic between pairs of stations for different types of cargo. The given time series are highly volatile, noisy, and nonstationary. A system is proposed that selects the optimum superpositioning of forecasting models with respect to features of the historical data. A model of sliding averages, exponential and kernel-smoothing models, the ARIMA model, Croston’s method, and LSTM neural networks are considered as candidates for inclusion in superpositioning.

作者简介

N. Uvarov

Faculty of Applied Mathematics and Control

编辑信件的主要联系方式.
Email: nikita.uvarov@phystech.edu
俄罗斯联邦, Moscow, 141701

M. Kuznetsov

Yahoo! Research

Email: nikita.uvarov@phystech.edu
美国, New York, NY, 10018

A. Malkova

Faculty of Applied Mathematics and Control

Email: nikita.uvarov@phystech.edu
俄罗斯联邦, Moscow, 141701

K. Rudakov

Department of Computer Science

Email: nikita.uvarov@phystech.edu
俄罗斯联邦, Moscow, 119991

V. Strijov

Federal Research Center “Computer Science and Control,”

Email: nikita.uvarov@phystech.edu
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018