Order of the length of Boolean functions in the class of exclusive-OR sums of pseudoproducts


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An exclusive-OR sum of pseudoproducts (ESPP) is a modufo-2 sum of products of affine (linear) Boolean functions. The length of an ESPP is defined as the number of summands in this sum; the length of a Boolean function in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function LESPP(n) on the set of Boolean functions in the class of ESPPs is considered; it is defined as the maximum length of a Boolean function of n variables in the class of ESPPs. It is proved that LESPP(n) = Ɵ (2n/n2). The quantity LESPP(n) also equals the least number l such that any Boolean function of n variables can be represented as a modulo-2 sum of at most l multiaffine functions.

Авторлар туралы

S. Selezneva

Department of Computational Mathematics and Cybernetics

Хат алмасуға жауапты Автор.
Email: selezn@cs.msu.su
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016