Order of the length of Boolean functions in the class of exclusive-OR sums of pseudoproducts


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

An exclusive-OR sum of pseudoproducts (ESPP) is a modufo-2 sum of products of affine (linear) Boolean functions. The length of an ESPP is defined as the number of summands in this sum; the length of a Boolean function in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function LESPP(n) on the set of Boolean functions in the class of ESPPs is considered; it is defined as the maximum length of a Boolean function of n variables in the class of ESPPs. It is proved that LESPP(n) = Ɵ (2n/n2). The quantity LESPP(n) also equals the least number l such that any Boolean function of n variables can be represented as a modulo-2 sum of at most l multiaffine functions.

Об авторах

S. Selezneva

Department of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: selezn@cs.msu.su
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).