Intensifying Starch Enzymatic Hydrolysis Using Wave Resonance Effects

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, it has been shown that the enzymatic hydrolysis of corn and potato starch affected by β-amylase can be intensified using wave resonant effects. It has been established that the concentration of sugary substances formed resulting from the fermentation of corn starch, after two hours of resonant wave treatment is 3.5 times higher than it is in the case of the traditional stirring mode. In addition, the wave treatment technique provides an increase in the yield of sugars in the course of the enzymatic processing of potato starch. The obtained results represent a basis for the development of highly efficient resource-saving wave technologies for the production of sugary substances and porous starches by means of enzymatic hydrolysis.

Авторлар туралы

S. Ganiev

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 101990, Moscow, Russia

Email: kobjakovinka@mail.ru
Россия, Москва

V. Kasilov

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 101990, Moscow, Russia

Email: kobjakovinka@mail.ru
Россия, Москва

O. Kislogubova

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 101990, Moscow, Russia

Email: kobjakovinka@mail.ru
Россия, Москва

O. Butikova

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 101990, Moscow, Russia

Email: kobjakovinka@mail.ru
Россия, Москва

N. Kochkina

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 101990, Moscow, Russia; Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, Russia

Хат алмасуға жауапты Автор.
Email: kobjakovinka@mail.ru
Россия, Москва; Россия, Иваново

Әдебиет тізімі

  1. Amaraweera S.M., Gunathilake C., Gunawardene O.H.P., Fernando N.M.L., Wanninayaka D.B., Dassanayake R.S., Rajapaksha S.M., Manamperi A., Fernando C.A.N., Kulatunga A.K., Manipura A. Development of starch-based materials using current modification techniques and their applications: A Review // Molecules. 2021. V. 26. P. 6880.
  2. Wang S., Copeland L. Effect of acid hydrolysis on starch structure and functionality: A Review // Critical Reviews in Food Science and Nutrition. 2015. V. 5. P. 1081.
  3. Punia S., Sandhu K.S., Dhull S.B., Kaur M. Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films International // J. of Biological Macromolecules. 2019. V. 133. P. 110.
  4. Park S., Kim Y. Clean label starch: production, physico-chemical characteristics, and industrial applications // Food Science and Biotechnology. 2021. V. 30. № 1. P. 1.
  5. Miao Z., Zhang Y., Lua P. Novel active starch films incorporating tea polyphenols-loaded porous starch as food packaging materials // Int. J. of Biological Macromolecules. 2021. V. 192. P. 1123.
  6. Azmi A.S., Malek M.I.A., Puad N.I.M. A review on acid and enzymatic hydrolyses of sago starch // Int. Food Research J. 2017. V. 24 (Suppl). P. 265.
  7. Favaro L., Viktor M.J., Rose S.H., Viljoen-Bloom M., Zyl W.H., Basaglia M., Cagnin L., Casella S. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases // Biotechnology and Bioengineering. 2015. V. 112. P. 1751.
  8. Sánchez O.J., Cardona C.A. Trends in biotechnological production of fuel ethanol from different feedstocks // Bioresource Technolgy. 2008. V. 99. P. 5270.
  9. Грачева И.М. Технология ферментных препаратов М.: Агропромиздат, 1987. 335 с.
  10. Sun H., Zhao P., Ge X., Xia Y., Hao Z., Liu J., Peng M. Recent advances in microbial raw starch degrading enzymes // Applied Biochemistry and Biotechnology. 2010. V. 60. P. 988.
  11. Wang D., Ma X., Yan L., Chantapakul T., Wanga W., Dinga T., Yea X., Liu D. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics // Carbohydrate Polymers. 2017. V. 175. P. 47.
  12. Gaquere-Parker A., Taylor T., Hutson R., Rizzo A., Folds A., Crittenden S., Zahoor N., Hussein B., Arruda A. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase // Ultrasonics – Sonochemistry. 2018. V. 41. P. 404.
  13. Delgado-Povedano M.M., Luque de Castro M.D. A review on enzyme and ultrasound: a controversial but fruitful relationship // Analytica Chimica Acta. 2015. V. 889. P. 1.
  14. Islam M.N., Zhang M., Adhikari B. The inactivation of enzymes by ultrasound – a review of potential mechanisms // Food Reviews Int. 2014. V. 30. P. 1.
  15. Huang G., Chen S., Dai C., Sun L., Sun W., Tang Y., Xiong F., He R., Ma H. Effects of ultrasound on microbial growth and enzyme activity // Ultrasonics Sonochemistry. 2017. V. 37. P. 144.
  16. Oliveira H.M., Pinheiro A.Q., Fonseca A.J.M., Cabrita A.R.J., Maia M.R.G. The intensification of amyloglucosidase-based saccharification by ultrasound // Ultrasonics – Sonochemistry. 2018. V. 49. P. 128.
  17. Das A., Banik B.K. Chapter 7 – Microwave-assisted enzymatic reactions // In Book: Microwaves in Chemistry Applications. 2021. P. 245.
  18. Osowiec A., Marciniak M., Lukasiewicz M. Microwave-assisted enzymatic hydrolysis of starch // The 13th Int. Electronic Conf. on Synthetic Organic Chemistry session Symposium on Microwave Assisted Synthesis. 2009.
  19. Ганиев Р.Ф., Ганиев С.Р., Касилов В.П., Кислогубова О.Н.., Коптелова Е.К., Кузьмина Л.Г., Курменев Д.В., Лукин Н.Д., Маслов П. М., Украинский Л.Е., Юдкин В.Ф. Волновой способ получения карбоксиметолированного крахмала. РФ Патент 2702592 C1, 2019.
  20. Коптелова Е.К., Никитина М.Ф., Кузина Л.Б., Касилов В.П., Кислогубова О.Н. Изменение физико-химических и реологических свойств кукурузного крахмала в процессе катионирования с применением метода нелинейного волнового диспергирования // Достижения науки и техники АПК. 2019. Т. 33. № 8. С. 79.
  21. Ганиев С.Р., Кузьмина Н.Д., Лукин Н.Д., Касилов В.П., Кислогубова О.Н., Курменев Д.В., Маслов П.М. Применение волновых технологий для получения модифицированных крахмалов КМК // Справочник. Инженерный журнал. 2019. № 11. С. 24.
  22. ГОСТ 31662-2012. Препараты ферментные. Методы определения ферментативной активности целлюлазы от 20.06.2012.
  23. Dura A., Błaszczak W., Rosell C.M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments // Carbohydrate Polymers. 2014. V. 101. P. 837.
  24. Han X., Wen H., Luo Y., Yang J., Xiao W., Ji X., Xie J. Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches // Food Hydrocolloids. 2021. V. 116. P. 106661.
  25. Gonzalez A., Wang Y.J. Surface removal enhances the formation of a porous structure in potato starch // Starch – Stärke. 2021. 2000261.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (75KB)
3.

Жүктеу (66KB)
4.

Жүктеу (1MB)

© С.Р. Ганиев, В.П. Касилов, О.Н. Кислогубова, О.А. Бутикова, Н.Е. Кочкина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>