Development of an Algorithm for Calculation of the Effective Parameters of a Blast Pulse during Explosive-Reactive Destruction of a Rock Mass

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The change in the spectral density of a stress pulse during the operation of an explosive facility in the rock mass is simulated. An algorithm has been developed for calculating the distribution of the spectral density of the pressure pulse for nonstationary gas-dynamic processes, taking into account the physical and mechanical properties of rocks.

About the authors

V. O. Solov’ev

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: solovievvo@yandex.ru
Moscow, Russia

I. M. Shvedov

National University of Science and Technology, MISiS; Mechanical Engineering Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: solovievvo@yandex.ru
Moscow, Russia; Moscow, Russia

References

  1. Solov’ev V.O., Shvedov I.M. Portable complex for controlled explosive reactive drilling of rocks // Int. J. of Engineering and Technology. 2018. V. 7. № 2.23. P. 140.
  2. Гончаров С.А., Дугарцыренов А.В. Формирование импульса давления при взрыве скважинных зарядов на карьерах // Горный информационно-аналитический бюллетень (ГИАБ). 2000. № 12. С. 31.
  3. Кутузов Б.Н., Андриевский А.П. Новая теория и новая технология разрушения горных пород удлиненными зарядами взрывчатых веществ. Новосибирск: Наука, 2002. 96 с.
  4. Зилеев Г.П., Зилеев А.Г. Оценка влияния взрывного импульса на параметры взрывной воронки // Записки Горного института. 2004. Т. 156. С. 136.
  5. Wang J., Yin Y., Esmaieili K. Numerical simulations of rock blasting damage based on laboratory-scale experiments // J. of Geophysics and Engineering. 2018. V. 15. № 6. P. 2399. https://doi.org/10.1088/1742-2140/aacf17
  6. Ge J., Xu Y., Huang W., Wang H. et al. Experimental study on crack propagation of rock by blasting under bidirectional equal confining pressure load // Sustainability. 2021. V. 13 (21). 12093. https://doi.org/10.3390/su132112093
  7. Lou X., Luo R., Yu J. Attenuation Law of Stress Waves in Cracked Rock Mass under Different Confining Pressures // Advances in Civil Engineering. 2019. № 3. P. 1. https://doi.org/10.1155/2019/7325634
  8. He C., Yang J., Yu Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure // International Journal of Rock Mechanics and Mining Sciences. 2018. V. 102. № 5. P. 101.
  9. Rao J.S., Bhatnagar R., Verma A.K. Experimental investigation of shock wave attenuation in rock media // Int. J. of Rock Mechanics and Mining Sciences. 2013. V. 57. P. 62.
  10. Yuan W., Su X., Wang W., Wen L., Chang J. Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces // Journal of Petroleum Science and Engineering. 2019. V. 177. P. 699.
  11. Li Y., Cao J., Chen X., Huang C., Zhao Q. Numerical investigation on crack formation and penetration mechanism between adjacent blastholes // Shock and Vibration. 2020. P. 1. https://doi.org/10.1155/2020/8816059
  12. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. М.: Мир, 1982. 428 с.
  13. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984. 831 с.
  14. Соловьев В.О., Шведов И.М. Исследование особенностей скоростей роста трещин в горных породах при взрывореактивном способе их разрушения // Проблемы машиностроения и надежности машин. 2021. № 5. С. 72.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (13KB)
3.

Download (22KB)
4.

Download (22KB)
5.

Download (850KB)

Copyright (c) 2023 В.О. Соловьев, И.М. Шведов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies