Способ получения высокоэнтропийного карбида в ионном расплаве

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Карбиды тугоплавких металлов TiC, ZrC, HfC, NbC и TaC обладают превосходными физическими, химическими и механическими свойствами в качестве материалов для ультравысокотемпературной керамики. Из них наиболее тугоплавкими являются TaC и HfC, температуры плавления которых приближаются к 4000°C. Нельзя не отметить высокую твердость, прочность и износостойкость тугоплавких карбидов. Отсюда вытекает закономерный интерес к высокоэнтропийным карбидам на их основе, которые становятся важным классом новых керамических материалов, поскольку потенциально обладают более совершенными прикладными свойствами. Однако получение таких материалов классическими металлургическими методами является сложной задачей. В современных исследованиях чаще всего образцы высокоэнтропийных карбидов синтезируют, используя дорогостоящее специальное оборудование (методы плазменно-искрового спекания, высокоэнергетические планетарные мельницы и т.п.) и сравнительно длительную подготовку прекурсоров к производству образцов. В настоящей работе описывается новый подход к синтезу многокомпонентного карбида состава (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C с помощью электрохимического процесса при температуре, не превышающей 1173 K. Метод основан на явлении бестокового переноса металлов в расплавах солей. После проведения последовательного переноса металлов образец отмывался от электролита, затем спекался в вакуумной печи. По данным рентгенофазового анализа полученный высокоэнтропийный карбид представляет собой однофазный твердый раствор с ГЦК структурой. Дифрактограмма синтезированного образца имеет хорошее согласие с расчетной дифрактограммой, полученной по формуле Дебая для суперячейки из 64000 атомов. Компактный образец высокоэнтропийного карбида изготавливался прессованием в пресс-форме таблетки диаметром 10 мм с добавлением кобальта в качестве матричного металла. После вакуумного спекания образец подвергался шлифовке для подготовки к исследованию на сканирующем электронном микроскопе. Было выполнено элементное картирование поверхности образца, которое показало удовлетворительное распределение металлов, входящих в состав высокоэнтропийного карбида. Измеренная микротвердость образца оказалась меньше, чем встречающиеся значения в публикациях других авторов, что может быть связано с некоторой остаточной пористостью образца.

Об авторах

А. В. Вараксин

Институт металлургии УрО РАН

Автор, ответственный за переписку.
Email: vorax@yandex.ru
Россия, Екатеринбург

С. А. Петрова

Институт металлургии УрО РАН

Email: vorax@yandex.ru
Россия, Екатеринбург

А. А. Ремпель

Институт металлургии УрО РАН

Email: vorax@yandex.ru
Россия, Екатеринбург

Список литературы

  1. Braic M., Braic V., Balaceanu M., Zoita C., Vladescu A., Grigore E. // Surf. Coat. Technol. 2010. 204. P. 2010–2014. https://doi.org/10.1016/j.surfcoat.2009.10.049
  2. Csanádi T., Vojtko M., Dankházi Z., Reece M.J., Dusza J. // J. Eur. Ceram. Soc. 2020. 40. P. 4774–4782. https://doi.org/10.1016/j.jeurceramsoc.2020.04.023
  3. He Y., Peng C., Xin S., Li K., Liang S., Lu X., Kang N., Xue H., Shen X., Shen T. // J. Mater. Sci. 2020. 55. P. 6754–6760. https://doi.org/10.1007/s10853-020-04471-3
  4. Du B., Liu H., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 4063–4068. https://doi.org/10.1111/jace.17134
  5. Zhang G.J., Deng Z.Y., Kondo N., Yang J.F., Ohji T. // J. Am. Ceram. Soc. 2000. 83. P. 2330–2338. https://doi.org/10.1111/j.1551-2916.2008.02507.x
  6. Gasch M., Ellerby D., Irby E., Beckman S., Gusman M., Johnson S. // J. Mater. Sci. 2004. 39. P. 5925–5937. https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  7. Sani E., Mercatelli L., Fontani D., Sans J.L., Sciti D. // J. Renew. Sustain. Energy. 2011. 3. 063107. https://doi.org/10.1063/1.3662099
  8. Liu J.X., Kan Y.M., Zhang G.J. // J. Am. Ceram. Soc. 2010. 93. P. 370–373. https://doi.org/10.1111/j.1551-2916.2009.03437.x
  9. Zhang H., Hedman D., Feng P., Han G., Akhtar F. // Dalton Trans. 2019. 48. P. 5161–5167. https://doi.org/10.1039/C8DT04555K
  10. Wang K., Chen L., Xu C., Zhang W., Liu Z., Wang Y., Ouyang J., Zhang X., Fu Y., Zhou Y. // J. Mater. Sci. Technol. 2020. 39. P. 99–105. https://doi.org/10.1016/j.jmst.2019.07.056
  11. Liu D., Gao Y., Liu J., Li K., Liu F., Wang Y., An L. // J. Eur. Ceram. Soc. 2016. 36. P. 2051–2055. https://doi.org/10.1016/j.jeurceramsoc.2016.02.014
  12. Becher P.F., Wei G.C. // J. Am. Ceram. Soc. 1984. 67. P. C-267–C-269. https://doi.org/10.1111/j.1151-2916.1984.tb19694.x
  13. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Ellerby D.T. // J. Am. Ceram. Soc. 2004. 87. P. 1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x
  14. Sarker P., Harrington T., Toher C., Oses C., Samiee M., Maria J.P., Brenner D.W., Vecchio K.S., Curtarolo S. // Nat. commun. 2018. 9. P. 4980. https://doi.org/10.1038/s41467-018-07160-7
  15. Harrington T.J., Gild J., Sarker P., Toher C., Rost C.M., Dippo O.F., McElfresh C., Kaufmann K., Marin E., Borowski L., Hopkins P.E., Luo J., Curtarolo S., Brenner D.W., Vecchio K.S. // Acta Mater. 2019. 166. P. 271–280. https://doi.org/10.1016/j.actamat.2018.12.054
  16. Yan X., Constantin L., Lu Y., Silvain J.F., Nastasi M., Cui B. // J. Am. Ceram. Soc. 2018. 101. P. 4486–4491. https://doi.org/10.1111/jace.15779
  17. Wei X.F., Liu J.X., Li F., Qin Y., Liang Y.C., Zhang G.J. // J. Eur. Ceram. Soc. 2019. 39. P. 2989–2994. https://doi.org/10.1016/j.jeurceramsoc.2019.04.006
  18. Castle E., Csanádi T., Grasso S., Dusza J., Reece M. // Sci. Rep. 2018. 8. P. 8609. https://doi.org/10.1038/s41598-018-26827-1
  19. Demirskyi D., Borodianska H., Suzuki T.S., Sakka Y., Yoshimi K., Vasylkiv O. // Scr. Mater. 2019. 164. P. 12–16. https://doi.org/10.1016/j.scriptamat.2019.01.024
  20. Ye B., Chu Y., Huang K., Liu D. // J. Am. Ceram. Soc. 2019. 102. P. 919–923. https://doi.org/10.1111/jace.16141
  21. Malinovskis P., Fritze S., Riekehr L., von Fieandt L., Cedervall J., Rehnlund D., Nyholm L., Lewin E., Jansson U. // Materi. Des. 2018. 149. P. 51–62. https://doi.org/10.1016/j.matdes.2018.03.068
  22. Braic V., Vladescu A., Balaceanu M., Luculescu C.R., Braic M. // Surf. Coat. Technol. 2012. 211. P. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033
  23. Ye B., Wen T., Huang K., Wang C.Z., Chu Y. // J. Am. Ceram. Soc. 2019. 102. P. 4344–4352. https://doi.org/10.1111/jace.16295
  24. Braic V., Balaceanu M., Braic M., Vladescu A., Panseri S., Russo A. // J. Mech. Behav. Biomed. Mater. 2012. 10. P. 197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020
  25. Yang Y., Wang W., Gan G.Y., Shi X.F., Tang B.Y. // Physica B Condens. Matter. 2018. 550. P. 163–170. https://doi.org/10.1016/j.physb.2018.09.014
  26. Zhang Q., Zhang J., Li N., Chen W. // J. Appl. Phys. 2019. 126. 025101. https://doi.org/10.1063/1.5094580
  27. Chicardi E., García-Garrido C., Gotor F.J. // Ceram. Int. 2019. 45. P. 21858–21863. https://doi.org/10.1016/j.ceramint.2019.07.195
  28. Chicardi E., García-Garrido C., Hernández-Saz J., Gotor F.J. // Ceram. Int. 2020. 46. P. 21 421–21 430. https://doi.org/10.1016/j.ceramint.2020.05.240
  29. Ye B., Wen T., Liu D., Chu Y. // Corros. Sci. 2019. 153. P. 327–332. https://doi.org/10.1016/j.corsci.2019.04.001
  30. Ye B., Wen T., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 500–507. https://doi.org/10.1111/jace.16725
  31. Grasso S., Saunders T., Porwal H., Milsom B., Tudball A., Reece M. // J. Am. Ceram. Soc. 2016. 99. P. 1534–1543. https://doi.org/10.1111/jace.14158
  32. Gild J., Kaufmann K., Vecchio K., Luo J. // Scr. Mater. 2019. 170. P. 106–110. https://doi.org/10.1016/j.scriptamat.2019.05.039
  33. Feng L., Fahrenholtz W.G., Hilmas G.E., Zhou Y. // Scripta Materialia. 2019. 162. P. 90–93. https://doi.org/10.1016/j.scriptamat.2018.10.049
  34. Илющенко Н.Г., Анфиногенов А.И., Шуров Н.И. Взаимодействие металлов в ионных расплавах. М.: Наука, 1991.
  35. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.
  36. Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука, 1976.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (75KB)
3.

Скачать (137KB)
4.

5.


© А.В. Вараксин, С.А. Петрова, А.А. Ремпель, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».