Towards a theory of growth of a crystal system in supercooled/supersaturated liquids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of nucleation and growth of spherical crystals at initial and intermediate stages of bulk crystallization in metastable liquids (supercooled melts and supersaturated solutions) is studied. An integrodifferential model of the balance and kinetic equations with corresponding boundary and initial conditions is formulated taking into account non-stationary temperature/concentration field around each evolving particle (taking into account its non-stationary growth rate). The model is solved using the saddle-point method for calculating a Laplace-type integral in parametric form. The particle-radius distribution function, supercooling/supersaturation of the liquid, total number of particles in the liquid and their average size are found analytically. Melt supercooling (solution supersaturation) decreases with time due to the release of latent heat of the phase transformation by the growing crystals. The particle-radius distribution function is limited by the maximum size of crystals and shifts towards larger sizes with time as a result of nucleation of new crystals and growth of existing crystals.

Texto integral

Acesso é fechado

Sobre autores

E. Makoveeva

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

I. Koroznikova

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

A. Glebova

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

A. Ivanov

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

M. Nikishina

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

L. Toropova

Ural Federal University named after B.N. Yeltsin

Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

D. Alexandrov

Ural Federal University named after B.N. Yeltsin

Autor responsável pela correspondência
Email: dmitri.alexandrov@urfu.ru
Rússia, Yekaterinburg

Bibliografia

  1. Alexandrov D.V., Ivanov A.A., Nizovtseva I.G. et al. // Crystals. 2022. 12. № 7. Р. 949. https://doi.org/10.3390/cryst12070949
  2. Martin S., Kauffman P. The evolution of under-ice melt ponds, or double diffusion at the freezing point // Journal of Fluid Mechanics. 1974. 64. № 3. Р. 507–528.
  3. Kurz W., Fisher D. J. Fundamentals of Solidification. Aedermannsdorf: Trans Tech Publications, 1989.
  4. Alexandrov D.V., Malygin A.P. // Doklady earth sciences. Springer Nature BV, 2006. 411. № 2. Р. 1407–1411. https://doi.org/10.1134/S1028334X06090169
  5. Herlach D., Galenko P., Holland-Moritz D. Metastable Solids from Undercooled Melts. Amsterdam, The Netherlands: Elsevier, 2007.
  6. Alexandrov D.V., Malygin A.P. // Physics of the Earth and Planetary Interiors. 2011. 189. № 3–4. Р. 134–141. https://doi.org/10.1016/j.pepi.2011.08.004
  7. Alexandrov D.V., Zubarev A.Y. // Phil. Trans. R. Soc. А. 2019. 377. № 2143. Р. 20180353. https://doi.org/10.1098/rsta.2018.0353
  8. Vollmer U., Raisch J. // Control Engineering Practice. 2001. 9. № 8. Р. 837–845. https://doi.org/10.1016/S0967–0661(01)00048-X
  9. Rachah A., Noll D., Espitalier F., Baillon F. // Intern. J. of Math. Modelling and Numerical Optimisation. 2015. 6. № 2. Р. 159–183. https://doi.org/10.1504/IJMMNO.2015.069968
  10. Alexandrov D.V. // Chemical Engineering Science. 2014. 117. Р. 156–160. https://doi.org/10.1016/j.ces.2014.06.012
  11. Makoveeva E.V., Alexandrov D.V., Ivanov A.A. // Crystals. 2022. 12. № 11. Р. 1634. https://doi.org/10.3390/cryst12111634
  12. Buyevich Y.A., Mansurov V.V. // J. of crystal growth. 1990. 104. № 4. Р. 861–867. https://doi.org/10.1016/0022–0248(90)90112-X
  13. Barlow D.A. // J. Cryst. Growth. 2009. 311. № 8. Р. 2480–-2483. https://doi.org/10.1016/j.jcrysgro.2009.02.035
  14. Barlow D.A. // J. Cryst. Growth. 2017. 470. Р. 8–14. https://doi.org/10.1016/j.jcrysgro.2017.03.053
  15. Alexandrov D.V., Malygin A.P. Transient nucleation kinetics of crystal growth at the intermediate stage of bulk phase transitions //Journal of Physics A: Mathematical and Theoretical. 2013. V. 46. № 45. Р. 455101. https://doi.org/10.1088/1751–8113/46/45/455101
  16. Aleksandrov D.V., Aleksandrova I.V., Ivanov A.A., Malygin A.P., Starodumov I.O., Toropova L.V. // Rasplavy. 2019. № 3. P. 219–233. [In Russian]. https://doi.org/10.1134/S0235010619030022
  17. Alexandrov D.V. // J. Phys. A: Mathematical and Theoretical. 2018. 51. № 7. Р. 075102. https://doi.org/10.1088/1751–8121/aaa5b7
  18. Alexandrov D.V., Nizovtseva I.G., Alexandrova I.V. // Intern. Journal of Heat and Mass Transfer. 2019. 128. Р. 46–53. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.119
  19. Alexandrov D.V., Alexandrova I.V. // Phil. Trans. R. Soc. 2019. 377. № 2143. Р. 20180209. https://doi.org/10.1098/rsta.2018.0209
  20. Alexandrova I.V., Alexandrov D.V. // Phil. Trans. R. Soc. 2020. 378. № 2171. Р. 20190245. https://doi.org/10.1098/rsta.2019.0245
  21. Alexandrova I.V., Ivanov A.A., Malygin A.P. et al. // The European Physical Journal Special Topics. 2022. 231. № 6. Р. 1089–1100. https://doi.org/10.1140/epjs/s11734–022–00513-w
  22. Alexandrov D.V. // The European Physical Journal Special Topics. 2020. 229. № 2–3. Р. 383–404 https://doi.org/10.1140/epjst/e2019–900049–4
  23. Fedoryuk M.V. The method of the pass. M.: Nauka, 1977.
  24. Frenkel J. Kinetic Theory of Liquids. New York: Dover Publications, 1945.
  25. Lifshitz E.M., Pitaevskii L.P. Physical Kinetics. Oxford: Pergamon, 1981.
  26. Landau L.D., Lifshitz E.M. Statistical physics. Pergamon Press, Oxford, UK, 1980.
  27. Garside J., Gaska C., Mullin J. // J. Cryst. Growth. 1972. 13. Р. 510–516. https://doi.org/10.1016/0022–0248(72)90290–4
  28. Shneidman V.A. // Physical Review E. 2010. 82. № 3. Р. 031603. https://doi.org/10.1103/PhysRevE.82.031603
  29. Thompson C., Spaepen F. // Acta Metallurgica. 1983. 31. № 12. Р. 2021–2027. https://doi.org/10.1016/0001–6160(83)90019–6
  30. Avdonin N.A. Mathematical description of crystallization processes. Zinatne, Riga, 1980.
  31. Gherras N., Fevotte G. // J. Cryst. Growth. 2012. 342. № 1. Р. 88–98. https://doi.org/10.1016/j.jcrysgro.2011.06.058
  32. Kidyarov B.I. Kinetics of crystal formation from the liquid phase. Novosibirsk: Nauka, 1979.
  33. Makoveeva E.V., Alexandrov D.V. // Philosoph. Magazine Letters. 2018. 98. № 5. Р. 199–208.https://doi.org/10.1080/09500839.2018.1522459
  34. Alexandrov D.V., Zubarev A.Y. Phase-structural and non-linear effects in heterogeneous systems // The European Physical Journal Special Topics. 2020. 229. Р. 2881–2884.
  35. Alexandrov D.V., Galenko P.K. // Phil. Trans. R. Soc. 2021. 379. № 2205. Р. 20200325. https://doi.org/10.1098/rsta.2020.0325
  36. Alexandrov D.V., Ivanov A.O. // J. Cryst. Growth. 2000. 210. № 4. Р. 797–810. https://doi.org/10.1016/S0022–0248(99)00763–0
  37. Karma A., Rappel W. // Physical review E. 1998. 57. № 4. Р. 4323. https://doi.org/10.1103/PhysRevE.57.4323
  38. Tong X., Beckermann C., Karma A., Li Q. // Physical Review E. 2001. 63. № 6. 061601. https://doi.org/10.1103/PhysRevE.63.061601
  39. Alexandrov D.V., Galenko P.K. // J. Phys. and Chem. Solids. 2017. 108. Р. 98–103. https://doi.org/10.1016/j.jpcs.2017.04.016
  40. Alexandrov D.V., Aseev D.L. One-dimensional solidification of an alloy with a mushy zone: thermodiffusion and temperature-dependent diffusivity // Journal of Fluid Mechanics. 2005. 527. Р. 57–66.
  41. Galenko P.K., Zhuravlev V.A. Physics of dendrites: computational experiments. World Scientific, 1994.
  42. Huppert H.E. The fluid mechanics of solidification // Journal of Fluid Mechanics. 1990. 212. Р. 209–240.
  43. Hills R.N., Loper D.E., Roberts P.H. A thermodynamically consistent model of a mushy zone // Q.J. Appl. Math. 1983. 36. Р. 505–539.
  44. Alexandrov D.V. Self-similar solidification: morphological stability of the regime // International journal of heat and mass transfer. 2004. 47. № 6–7. Р. 1383–1389.
  45. Alexandrov D.V., Nizovtseva I.G., Malygin A.P. et al. // J. Phys.: Condensed Matter. 2008. 20. № 11. Р. 114105. https://doi.org/10.1088/0953–8984/20/11/114105
  46. Alexandrov D.V., Malygin A.P. Self-similar solidification of an alloy from a cooled boundary // International journal of heat and mass transfer. 2006. 49. № 3–4. Р. 763–769.
  47. Alexandrov D.V., Aseev D.L., Nizovtseva I.G. et al. // International journal of heat and mass transfer. 2007. 50. № 17–18. Р. 3616–3623. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.006
  48. Fowler A.C. // IMA Journal of Applied Mathematics. 1985. 35. № 2. Р. 159–174. https://doi.org/10.1093/imamat/35.2.159
  49. Alexandrov D.V., Malygin A.P. // International journal of heat and mass transfer. 2012. 55. № 11–12. Р. 3196–3204. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.048
  50. Worster M.G. Solidification of an alloy from a cooled boundary // Journal of Fluid Mechanics. 1986. 167. Р. 481–501.
  51. Borisov V.T. Teoriya dvukhfaznoy zony metallicheskikh slitkov [The theory of the two-phase zone of metal ingots]. M.: Metallurgiya, 1987. [In Russian].
  52. Makoveeva E., Alexandrov D., Ivanov A. // Mathematical Methods in the Applied Sciences. 2021. 44. № 16. Р. 12244–12251. https://doi.org/10.1002/mma.6970
  53. Alexandrov D.V. // Physics Letters A. 2014. 378. № 21. Р. 1501–1504. https://doi.org/10.1016/j.physleta.2014.03.051
  54. Alexandrov D.V., Nizovtseva I.G. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. 470. № 2162. Р. 20130647. https://doi.org/10.1098/rspa.2013.0647
  55. Makoveeva E.V., Alexandrov D.V. // Phil. Trans. R. Soc. A. 2021. 379. № 2205. Р. 20200307. https://doi.org/10.1098/rsta.2020.0307
  56. Nikishina M.A., Alexandrov D.V. // Phil. Trans. R. Soc. A. 2021. 379. № 2205. Р. 20200306. https://doi.org/10.1098/rsta.2020.0306
  57. Slezov V.V. Kinetics of first-order phase transitions. Weinheim: Wiley, 2009.
  58. Alyab’eva A.V., Buyevich Y.A., Mansurov V.V. Evolution of a particulate assemblage due to coalescence combined with coagulation // J. de Physique II. 1994. 4. № 6. Р. 951–957.
  59. Alexandrova I.V., Alexandrov D.V., Makoveeva E.V. // Phil. Trans. R. Soc. A. 2021. 379. № 2205. Р. 20200308. https://doi.org/10.1098/rsta.2020.0308
  60. Alexandrova I.V., Alexandrov D.V. // The European Physical Journal Special Topics. 2022. 231. № 6. Р. 1115–1121. https://doi.org/10.1140/epjs/s11734–022–00522–9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1

Baixar (150KB)
3. Fig.2

Baixar (153KB)
4. Fig.3

Baixar (215KB)
5. Fig.4

Baixar (89KB)
6. Fig.5

Baixar (159KB)
7. Tabl.

Baixar (393KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies