THE INFLUENCE OF COBALT ON DENSITY AND ELECTRICAL RESISTIVITY OF Al–Ni–Co–Ce ALLOYS IN CRYSTALLINE AND LIQUID STATES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work were studied density (by gamma-absorption method) and electrical resistivity (by contactless method in rotating magnetic field) of Al–Ni–Co–Ce glass-forming alloys with different ratios of transition metals. It was found the existence of a wide two-phase zone was established and jump-like changes in properties at solidus and liquidus temperatures. Increasing of cobalt content from 2 to 4 at % leads to 2% decrease of density and 3% increase of electrical resistivity in crystalline and liquid states. Temperature coefficients of change in properties were calculated. Density hysteresis was detected, which occurs when melts are overheated above 1350 K. This fact is related to the disintegration of large-scale microheterogeneities that exist in melts during heating. It is shown that these results can be used to optimize the process of obtaining rapidly hardened alloys.

Sobre autores

B. Rusanov

Ural State Pedagogical University

Autor responsável pela correspondência
Email: rusanov@uspu.ru
Russia, Yekaterinburg

V. Sidorov

Ural State Pedagogical University; Ural Federal University

Email: rusanov@uspu.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

E. Sterkhov

Institute of Metallurgy UB RAS

Email: rusanov@uspu.ru
Russia, Yekaterinburg

S. Petrova

Ural Federal University; Institute of Metallurgy UB RAS

Email: rusanov@uspu.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

A. Rusanova

Institute of Metallurgy UB RAS

Email: rusanov@uspu.ru
Russia, Yekaterinburg

A. Sabirzyanov

Ural State University of Railway Transport

Email: rusanov@uspu.ru
Russia, Yekaterinburg

E. Sidorova

Plekhanov Russian University of Economics

Email: rusanov@uspu.ru
Russia, Moscow

Bibliografia

  1. Inoue A., Ohtera K., Tsai A.P., Masumoto T. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2) // Jpn. J. Appl. Phys. 1988. 27. Р. L479–L482.
  2. Jones H., Suryanarayana C. Rapid quenching from the melt // J. Mater. Sci. 1973. 72. № 8. P. 705–753.
  3. Zhang L.M., Zhang S.D., Ma A.L., Umoh A.J., Hu H.X., Zheng Y.G., Yang B.J., Wang J.Q. Influence of cerium content on the corrosion behavior of Al–Co–Ce amorphous alloys in 0.6 M NaCl solution // J. Mat. Sci. & Tech. 2019. 35. № 7. P. 1378–1387.
  4. Tailleart N.R., Huang R., Aburada T., Horton D.J., Scully J.R. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al–Co–Ce alloy // Corr. Sci. 2012. 59. P.238–248.
  5. Karfidov E.A., Nikitina Ye.V., Rusanov B.A., Sidorov V.Ye. Vliyaniye kobal’ta na korrozionnuyu stoykost’ amorfnykh splavov Al–Ni–Co–R [Influence of cobalt on the corrosion resistance of Al–Ni–Co–R amorphous alloys] // Rasplavy. 2022. 5. Р. 477–484. [In Russian].
  6. Gloriant T., Greer A.L. // Nanostruct. Mat. 1998. 10. P. 389–396. http://dx.doi.org/10.1016/S0965-9773(98)00079-8
  7. Li C.L., Wang P., Sun S.Q., Voisey K.T., McCartney D.G. // App. Surf. Sci. 2016. 384. P. 116–124. https://doi.org/10.1016/j.apsusc.2016.04.188
  8. Zhang Y., Warren P.J., Cerezo A. // Mater. Sci. Eng. A. 2002. 327. P. 109–115. http://dx.doi.org/10.1016/S0921-5093(01)01888-3
  9. Abrosimova G., Aronin A., Budchenko A. // Mat. Lett. 2015. 139. P. 194–196. https://doi.org/10.1016/j.matlet.2014.10.076
  10. Radiguet B., Blavette D., Wanderka N., Banhart J., Sahoo K.L. // Appl. Phys. Lett. 2008. 92. P. 103126. https://doi.org/10.1063/1.2897303
  11. Louzguine-Luzgin D.V., Inoue A. // J. Alloys and Comp. 2005. 399. P. 78–85. https://doi.org/10.1016/j.jallcom.2005.02.018
  12. Bazlov A.I., Tabachkova N.Y., Zolotorevsky V.S., Louzguine-Luzgin D.V. Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates // Intermet. 2018. 94. P. 192–199.
  13. Jin L., Zhang L., Liu K., Che Z., Li K., Zhang M., Zhang B. Preparation of Al-based amorphous coatings and their properties // J. Rare Earths. 2021. 39. № 3. P. 340–347.
  14. Triveсo Rios C., Suriсach S., Barу M.D., Bolfarini C., Botta W.J., Kiminami C.S. Glass forming ability of the Al–Ce–Ni system // J. Non-Cryst. Sol. 2008. 354. P. 4874–4877.
  15. Abrosimova G.Ye., Aronin A.S., Shirnina D.P. Izmeneniye struktury metallicheskogo stekla Al88Ni2Y10 pri termoobrabotke i deformatsii [Changes in the structure of Al88Ni2Y10 metallic glass during heat treatment and deformation] // Fizika i tekhnika vysokikh davleniy. 2013. 23. № 1. P. 90–98. [In Russian].
  16. Suryanarayana C., Inoue A. Bulk metallic glasses. CRC Press. 2017.
  17. Rusanov B.A., Sidorov V.Ye, Son L.D. // Izv. vuzov. Fizika. 2022. 65. № 6. P. 112–118. [In Russian]. https://doi.org/10.17223/00213411/65/6/112
  18. Bruker AXS. In DIFFRAC. EVA V5.1. Bruker AXS GmbH, Karlsruhe, Germany. 2019.
  19. Gates-Rector S., Blanton T. // Powder Diffr. 2019. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
  20. Rietveld H.M. // J. Appl. Cryst. 1969. 2. P. 65–71. https://doi.org/10.1107/S0021889869006558
  21. Coelho A.A. // J. Appl. Cryst. 2018. 51. P. 210–218. https://doi.org/10.1107/S1600576718000183
  22. Rusanov B.A., Baglasova E.S., Popel P.S., Sidorov V.E., Sabirzyanov A.A. // High Temp. 2018. 56. P. 439–443. https://doi.org/10.1134/S0018151X18020190
  23. Regel’ A.R., Glazov V.M. Fizicheskiye svoystva elektronnykh rasplavov [Physical properties of electronic melts]. M.: Nauka. 1980. [In Russian].
  24. Rusanov B.A., Sidorov V.E., Moroz A.I., Svec Sr. P., Janickovic D. // Tech. Phys. Lett. 2021. 47. P. 770–772. https://doi.org/10.1134/S1063785021080101

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (106KB)
3.

Baixar (1MB)
4.

Baixar (117KB)
5.

Baixar (165KB)
6.

Baixar (96KB)

Declaração de direitos autorais © Б.А. Русанов, В.Е. Сидоров, Е.В. Стерхов, С.А. Петрова, А.И. Русанова, А.А. Сабирзянов, Е.Е. Сидорова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies