MgO STABILITY IN EUTECTIC Li2CO3–Na2CO3 AND Li2CO3–K2CO3

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Research and technology studies on Molten Carbonate Fuel Cells (MCFC) are being directed at improving their performance in mode of greenhouse gas conversion for chemical energy storage. The changes in gas composition feeding MCFC demand new insulating materials to be found. In the current work, the equilibrium solubility of magnesia ceramics in air in contact with Li2CO3–Na2CO3 and Li2CO3–K2CO3 eutectic mixtures was measured at 600°С. The study shows that magnesia is completely stable in the tested melts for at least more than 270 h. Its solubility was found to increase in Li–K carbonate eutectic. Conclusions about the material stability are based on results of inductively coupled plasma atomic absorption spectroscopy of melts and scanning electron microscopy combined with X-ray diffraction employed to ceramics testing. Magnesia is recommended as an insulating material in electrolysis cells containing Li2CO3–Na2CO3 and Li2CO3–K2CO3 carbonate eutectics for the conversion of the greenhouse gas in chemical energy storage devices operating in air.

Sobre autores

A. Tolkacheva

Institute of High-Temperature Electrochemistry, UB RAS

Autor responsável pela correspondência
Email: a.s.tolkacheva@urfu.ru
Russia, Yekaterinburg

M. Konopel’ko

Institute of High-Temperature Electrochemistry, UB RAS

Email: a.s.tolkacheva@urfu.ru
Russia, Yekaterinburg

Bibliografia

  1. Hamad T.A., Agll A.A., Hamad Y.M., Bapat S., Thomas M., Martin K. B., Sheffield J. W. // Case Stud. Therm. Eng. 2013. 1. P. 45–50. https://doi.org/10.1016/j.csite.2013.09.001
  2. Lan R., Tao S. // Sci. Adv. 2016. 2. e1600772. https://doi.org/10.1126/sciadv.1600772
  3. Discepoli G. Cinti G., Desideri U., Penchini D., Proietti S. // Int. J. Greenh. Gas Control. 2012. 9. P. 372–384. https://doi.org/10.1016/j.ijggc.2012.05.002
  4. Carapellucci R., Cipollone R., Battista D.D. // Energy Procedia. 2017. 126. P. 477–484. https://doi.org/10.1016/j.egypro.2017.08.228
  5. Antolini Е. // Ceram. Int. 2013. 39. P. 3463–3478. https://doi.org/10.1016/j.ceramint.2012.10.236
  6. Terada S., Higaki K., Nagashima I., Ito Y. // J. Power Sources. 1999. 83. P. 227–230. https://doi.org/10.1016/S0378-7753(99)00282-7
  7. Celman J. R., Maru H. C. Advances in molten salt chemistry, vol. 4, Mamantov G., Braustein J. Ed., N.Y., Plenum. 1981. P. 159.
  8. Kaplan V., Bendikov T., Feldman Y., Gartsman K., Wachtel E., Lubomirsky I. // J. Power Sources. 2016. 301. P. 271–276. https://doi.org/10.1016/j.jpowsour.2015.09.125
  9. Mizuhata M., Harada Y., Cha G., Bienvenu Béléké A., Deki S. // J. Electrochem. Soc. 2004. 151. № 5. E179–E185. https://doi.org/10.1149/1.1688798
  10. Gao W., Zhou T., Gao Y., Louis B., O’Hare D., Wang Q. // J. Energy Chem. 2017. 26. P. 830–838. https://doi.org/10.1016/j.jechem.2017.06.005
  11. Zhang K., Li X.S., Li W.Z., Rohatgi A., Duan Y., Singh P., Li L., King D.L. // Adv. Mater. Interfaces. 2014. 1. P. 1400030. https://doi.org/10.1002/admi.201400030
  12. Velden P.F. // Trans. Faraday Soc. 1967. 63. P. 175–184. https://doi.org/10.1039/TF9676300175
  13. Zakir’yanova I.D. // J. Applied Spectroscopy. 2018. 85. № 4. P. 611–615. https://doi.org/10.1007/S10812-018-0694-5
  14. Fedorov P.P., Tkachenko Ye.A., Kuznetsov S.V., Voronov V.V., Lavrishchev S.V. Polucheniye nanochastits MgO [Preparation of MgO nanoparticles] // Neorganicheskiye materialy. 2007. 43. № 5. P. 574–576. [In Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (43KB)
3.

Baixar (126KB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (2MB)

Declaração de direitos autorais © А.С. Толкачева, М.А. Конопелько, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies