LOW-TEMPERATURE ELECTROLYTIC PRODUCTION OF Al-REM ALLOYS IN CRYOLITE MELTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of electrolytic production of Al–Y and Al–Sc alloys in an electrolyte based on potassium cryolite KF–NaF(10 wt %)–AlF3 with a cryolite ratio (CR) of 1.5, containing Al2O3, Sc2O3, or Y2O3 oxides, in a cell with vertical electrodes has been studied. The Fe–Ni–Cu alloy served as an inert anode. The wetted cathode was a graphite plate coated with the aluminum diboride. The electrolysis was carried out at a cathode current density of 0.2 A/cm2 and a temperature of 830°C. The Al2O3 mass was calculated based on the value of the current efficiency of 60%. The Sc2O3 additive was introduced into the melt in an amount of 1 wt %. The mass of the Y2O3 additive was chosen based on its solubility in the melt under study. For this, the influence of Y2O3 additives on the liquidus temperature of the quasi-binary mixture [KF–NaF(10 wt %)–AlF3 (KO = 1.5)]–Y2O3 was determined and it was found that, in contrast to Sc2O3 additives, which lower the liquidus temperature of the cryolite melt, small additions of Y2O3 lead to its sharp increase. It has been found that the efficiency of the electrolytic reduction of Y2O3 is 10 times higher than that of the aluminothermic reduction. Other things being equal, the efficiency of the electrolytic reduction of Y2O3 is higher than that of Sc2O3. Alloys Al–Y and Al–Sc with a REM content of 0.6 wt % have been obtained. However, the time to reach the maximum recovery of yttrium significantly exceeds the time to recover scandium. Metallographic studies of the obtained alloys indicated the presence of Al3Sc and Al2Y intermetallic compounds. A conclusion is made about the fundamental possibility of low-temperature electrolytic production of Al-REM alloys in cryolite melts based on potassium cryolite in vertical cells with an inert metal anode and a wettable cathode.

About the authors

A. V. Rudenko

Institute of High Temperature Electrochemistry, Ural Branch of the RAS

Author for correspondence.
Email: a.rudenko@ihte.uran.ru
Russia, Yekaterinburg

O. Yu. Tkacheva

Institute of High Temperature Electrochemistry, Ural Branch of the RAS

Email: a.rudenko@ihte.uran.ru
Russia, Yekaterinburg

A. A. Kataev

Institute of High Temperature Electrochemistry, Ural Branch of the RAS

Email: a.rudenko@ihte.uran.ru
Russia, Yekaterinburg

References

  1. Ri E. Kh., Ri Kh., Goncharov A.V. Effect of Al–Y–Ce–La master alloy on structure formation, liquation processes and properties of AK7ch silumine (Al9) // MATEC Web of Conferences. 2019. 298.
  2. Zou H., Zeng X., Zhai C., Ding W. The effects of yttrium element on microstructure and mechanical properties of Mg–5 wt % Zn–2 wt % Al alloy // Materials Science and Engineering A. 2005. 402. P. 142–148.
  3. Huang K., Feng Q., Zhou W., Ren Y., Huang L., Xiang J., Tang H., Zhu Y., Wei Y. Enhancement of strength mechanical and corrosion resistance of 7055 alloy with minor Sc and Y addition // Mater. Res. Express 8. 2021. № 016524.
  4. Nikitin V.I., Krivopalov D.S., Nikitin K.V., Napalkov V.I., Makhov S.V. Vliyaniye usloviy kristallizatsii na strukturu modifitsiruyushchey ligatury A–Sc [Influence of crystallization conditions on the structure of the modifying master alloy A-Sc] // Liteynoye proizvodstvo. 2014. № 11. P. 5–8. [In Russian].
  5. Chen Y., Liu C.Y., Ma Z.Y., Huang H.F., Peng Y.H., Hou Y.F. Effect of Sc addition on the microstructure, mechanical properties, and damping capacity of Al–20Zn alloy // Materials characterization. 2019. 159. P. 109892.
  6. Prach O., Trudonoshyn O., Randelzhofer P., Körner С., Durst K. Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys // Materials Science & Engineering A. 2019. 459. P. 603–612.
  7. Liao W., Jiang W., Yang X.-Sh., Wang H., Ouyang L., Zhu M. Enhancing (de) hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A 1/4 Ce, Nd, Pr, Sm, and Y) alloys via ball milling // J. Rare Earths. 2021. 39. P. 1010–1016.
  8. Skachkov V.M., Yatsenko S.P. Polucheniye Sc, Zr, Hf, Y ligatur na osnove alyuminiya metodom vysokotemperaturnykh obmennykh reaktsiy v rasplavakh soley [Obtaining Sc, Zr, Hf, Y master alloys based on aluminum by the method of high-temperature exchange reactions in molten salts] // Tsvetnyye metally. 2014. № 3. P. 22–26. [In Russian].
  9. Konokotin S.P., Yatsyuk I.V., Dobrynin D.A., Azarovskiy Ye.N. Vliyaniye ittriya na kachestvo litykh zagotovok iz splavov na osnove alyuminiya [Influence of yttrium on the quality of cast billets from aluminum-based alloys] // Nauchno-tekhnicheskiy zhurnal “Trudy VAMI”. 2020. № 3. [In Russian].
  10. Snitovskiy Yu.P. Fazovyy sostav i kontsentratsii ittriya v plenkakh pri osazhdenii alyuminiya i alyuminiyevykh splavov iz gazovoy fazy [Phase composition and concentrations of yttrium in films during the deposition of aluminum and aluminum alloys from the gas phase] // Vestnik Yugorskogo gosudarstvennogo universiteta. 2021. 4. № 63. P. 16–31. [In Russian].
  11. Makhov S.V., Moskvitin V.I. Sovremennaya tekhnologiya polucheniya alyuminiyevo-skandiyevoy ligatury [Modern technology for obtaining aluminum-scandium ligatures] // Tsvetnyye metally. 2010. № 5. P. 95–96. [In Russian].
  12. He J., Hua Zh., Liu H., Xu L., He Sh., Yang Y., Zhao Zh. Redox behavior of yttrium and electrochemical formation of Y–Al alloys in molten chlorides // J. Electrochem. Soc. 2018. 165. № 11. P. 598–603.
  13. Yan Y.D., Yang X.N., Huang Y., Xue Y., Zhang M.L., Han W., Zhang Zh. Direct electrochemical formation of different phases Al–Y alloys by co-deposition in LiCl–KCl melts // Rare Met Mater Eng. 2016. 45. № 2. P. 272.
  14. Yu G., Zhou L., Liu F., Pang S., Chen D., Zhao H., Zuo Zh. Electrochemical co-reduction of Y(III) and Al(III) in a fluoride molten salt system and electrolytic preparation of Y–Al intermediate alloys // J. Rare Earths. 2022. 40. № 8. P. 1945–1952.
  15. Filatov A.A., Nikolaev A.Y., Suzdaltsev A.V., Zaikov Y.P. Extraction of zirconium from its oxide during electrolysis of the KF–AlF3–Al2O3–ZrO2 melts // Russian J. Non-Ferrous Metals. 2022. 63. № 4. P. 379–384.
  16. Filatov A., Suzdaltsev A., Zaikov Y. Production of Al–Zr master alloy by electrolysis of the KF–NaF–AlF3–ZrO2 melt: modifying ability of the master alloy // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2021. 52. № 6. P. 4206–4214.
  17. Nikolayev A.Yu., Suzdal’tsev A.V., Zaykov Yu.P. Elektrovydeleniye alyuminiya i skandiya iz ftoridnykh i oksidno-ftoridnykh rasplavov [Electrical release of aluminum and scandium from fluoride and oxide-fluoride melts] // Butlerovskiye soobshcheniya. 2018. 56. № 10. P. 75–83. [In Russian].
  18. Nikolaev A.Yu., Suzdaltsev A.V., Zaikov Yu.P. Electrowinning of aluminium and scandium from KF–AlF3–Sc2O3 melts for the synthesis of Al–Sc master alloys // J. Electrochemical Society. 2019. 166. № 8. P. D252–D257.
  19. Nikolayev A.Yu., Suzdal’tsev A.V., Zaykov Yu.P. Novyy sposob sinteza ligatur Al–Sc v oksidno-ftoridnykh i ftoridnykh rasplavakh [A new method for the synthesis of Al–Sc master alloys in oxide-fluoride and fluoride melts] // Rasplavy. 2020. № 2. P. 155–165. [In Russian].
  20. Suzdaltsev A.V., Filatov A.A., Nikolaev A.Yu., Pankratov A.A., Molchanova N.G., Zaikov Yu.P. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts // Russian Metallurgy. 2018. № 2. P. 133–138.
  21. Report of the American Society of Mechanical Engineers. Technical Working Group on Inert Anode Technologies. The U.S. Department of Energy Office of Industrial Technologies. CRTD – Vol. 53. 1999.
  22. Dedyukhin A.Ye., Apisarov A.P., Tkacheva O.Yu., Red’kin A.A., Zaykov Yu.P., Frolov A.V., Gusev A.O. Vliyaniye NaF na elektroprovodnost’ i temperaturu likvidusa rasplavlennoy sistemy KF–AlF3 [Influence of NaF on the electrical conductivity and liquidus temperature of the molten KF–AlF3 system] // Rasplavy. 2008. № 4. P. 44–50. [In Russian].
  23. Yasinskiy A.S., Padamata S.K., Polyakov P.V., Shabanov A.V. An update on inert anodes for aluminium electrolysis // Non-ferrous Metals. 2020. № 1. P. 15–23.
  24. Rudenko A.V., Kataev A.A., Neupokoeva M.M., Tkacheva O.Y. Borated graphite cathodes for low-temperature aluminum electrolysis // Chimica Techno Acta. 2022. 9. № 2. P. 20229208.
  25. Rudenko A.V., Katayev A.A., Zakir’yanova I.D., Tkacheva O.Yu. Vliyaniye Sc2O3 na fiziko-khimicheskiye svoystva legkoplavkikh kriolitovykh rasplavov KF–AlF3 i KF–NaF–AlF3 [Effect of Sc2O3 on the physicochemical properties of low-melting cryolite melts KF–AlF3 and KF–NaF–AlF3] // Tsvetnyye metally. 2017. № 11. P. 22–26. [In Russian].
  26. Suzdaltsev A.V., Filatov A.A., Nikolaev A.Yu., Pankratov A.A., Molchanova N.G., Zaikov Yu.P. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts // Russian Metallurgy. 2018. № 2. P. 133–138.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (68KB)
4.

Download (89KB)
5.

Download (1022KB)

Copyright (c) 2023 А.В. Руденко, О.Ю. Ткачева, А.А. Катаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies