Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

№ 3 (2024)

Мұқаба

Бүкіл шығарылым

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Articles

Synthesis of α-LiAlO2 powders of controlled particle size composition for a matrix electrolyte based on carbonate melts

Tolkacheva A., Konopelko M.

Аннотация

Three methods of synthesis α-LiAlO2 powders for the preparation of a matrix electrolyte for a molten carbonate fuel cell have been considered. The submicron fraction with a specific surface area of 79 m2/g was obtained from an aqueous solution by spray pyrolysis and the large rod-shaped fractions with particles up to 19 μm in length were obtained by synthesis in halide melt and in aqueous solution. Tape casted ceramic matrices were tested in the single fuel cell with 53Li2CO3–47Na2CO3 melt as an electrolyte. The matrices have demonstrated good gas tightness; nitrogen inleakage in anode space did not exceed 0.6 % during 1100 h lifetime test, which included 15 thermal cycles with cooling the cell below melting point of the electrolyte.

Rasplavy. 2024;(3):225-237
pages 225-237 views

Exact analytical solution of the equations for a quasiequilibrium two-phase domain: permeability and interdendritic spacing

Makoveeva E., Alexandrov D., Titova E., Toropova L., Alexandrova I.

Аннотация

This study is concerned with the theoretical description of a quasi-stationary process of directional crystallization of binary melts and solutions in the presence of a quasi-equilibrium two-phase region. The quasi-equilibrium process is ensured by the fact that the system supercooling is almost completely compensated by heat released during the phase transformation. Quasi-stationarity of the process determining constancy of the crystallization rate is ensured by given temperature gradients in the solid and liquid phases. The system of heat and mass transfer equations and boundary conditions to them under these assumptions is dependent on a single spatial variable in the reference frame moving with the crystallization rate relative to a laboratory coordinate system. Exact analytical solutions to the formulated problem in parametric form are obtained. The parameter of the solution is the solid phase fraction in a two-phase region. The distributions of temperature and impurity concentration in the solid, liquid and two-phase regions of the crystallizing system, the rate of solidification, and the spatial coordinate in the two-phase region depending on the solid phase fraction in it are found. An algebraic equation for the solid phase fraction at the interface between the solid material and the two-phase region is derived. Exact analytical solutions show that the impurity concentration in the two-phase layer increases as the solid phase fraction increases. Moreover, the solid phase fraction at the interface solid phase — two phase region and its thickness increase as the temperature gradient in the solid phase and the solidification rate increase. The developed theory allows us to determine analytically the permeability of the two-phase region and a characteristic interdendritic spacing in it. Analytical solutions show that the relative permeability in the two-phase region increases from a certain value at the interface with the solid phase to unity at the interface with the liquid phase. The selection theory of stable dendritic growth allows us to determine analytically a characteristic interdendritic distance in the two-phase layer that decreases as the temperature gradient in the solid phase increases. An increase of impurity in the molten phase gives a decrease in the interdendritic spacing within a two-phase region.

Rasplavy. 2024;(3):238-251
pages 238-251 views

Anode process on gold in KF–AlF3–Al2O3 melt

Nikolaev А., Suzdaltsev A., Zaikov Y.

Аннотация

In the conditions of resource saving and carbon footprint reduction, the development of oxygen–releasing anodes for technologies of production of important metals and alloys by electrolysis of molten salts seems to be an urgent task. To determine the degree of “inertness” of a particular anode material, data on the kinetics and mechanism of the anode process on a material not subject to oxidation are required. In this connection, the anodic process on gold in the KF–AlF3–Al2O3 melt for electrolytic aluminum production was investigated by cyclic and square–wave voltammetry methods. The influence of temperature (715 and 775 оC) of the melt, the content of Al2O3 in it (from 0.1 to saturation), as well as the polarization rate (0.05–1 V/s) on the kinetics and some features of the mechanism of the investigated process was determined. An assumption is made that oxygen release on gold without dissolution of the substrate takes place in the region of overvoltages from 0 to 0.8 V. It is shown that the process includes the stages of electrochemical adsorption and desorption of the intermediate product, the first of which is limited by the diffusion of electroactive anions to the anode.

Rasplavy. 2024;(3):252-262
pages 252-262 views

Investigation of high-temperature oxide-metal melts during induction melting in a cold crucible

Lopukh D., Vavilov A., Martynov A., Almyashev V., Svinolupova A.

Аннотация

The object of the study is high-temperature oxide-metal melts obtained in furnaces of induction melting in a cold crucible (IMCC). The results of pilot tests in IMCC furnaces at melt temperatures of more than 2200 оC in air, conducted to study the distribution of components between the oxide and metal phases of a two-phase melt with limited miscibility of components, are presented. The results of physicochemical studies of materials obtained by quenching crystallization of a high-temperature melt are presented, confirming the reduction of silicon and the oxidation of iron with the redistribution of these components between the oxide and metal phases. This experimental result contradicts the well-known Ellingham diagrams and thermodynamic calculations, but a similar effect is observed experimentally in the U–O–Fe system. Thus, the IMCC method allows for the inversion of redox processes in a number of oxide-metal systems, which can be used to obtain new materials and create technologies for high-temperature extraction of target components.

Rasplavy. 2024;(3):263-281
pages 263-281 views

Thermodynamic modeling of liquid binary alloys of the Al–Er system

Podkin E., Gilev I., Shubin A.

Аннотация

The paper presents the results of a study of the thermochemical properties of the Al–Er system. The thermodynamic characteristics were evaluated (fH0298, S0298, (H0298H00), Cp(T) and Cp(liq)) for the intermetallic compounds Al3Er, Al2Er, AlEr, Al2Er3, AlEr2. The values of fH0298 calculated based on the semiempirical Miedema model adapted for the group of Al–REM alloys were taken for calculations and amounted to –47.7, –58.4, –63, –55.2, –46.8 kJ/mol∙at, respectively. The mixing characteristics of liquid alloys of this system were evaluated by Terra software package for modeling the equilibrium states of heterogeneous inorganic systems with an extensive database of properties of individual substances. The model of ideal solutions of interaction products was used as a computational model. Modeling of equilibrium composition and properties of melts was carried out in the temperature range of 1900–2100 K, in an argon atmosphere at a total pressure of 0.1 MPa in the system. Comparison of the obtained results with the simulation results in the approximation of an ideal solution, allowed us to determine the excess integral thermodynamic properties of liquid alloys (Gibbs energy, enthalpy, and entropy). It is shown that in the studied temperature range, with an increase of temperature, there is a natural, though not significant, decrease in the values of these parameters by absolute value. It is established that the formation of liquid alloys of the Al–Er system is accompanied by significant heat release: the value of the integral enthalpy of mixing at a temperature T = 2100 K is –58.9 kJ/ mol∙at. When comparing the thermochemical properties of the Al–Er system with the binary systems Al–Y and Al–Sc studied by the same methods, it is shown that all energy curves pass through the extremum at XSc,Y,Er ≈ 0.5. The strongest interaction of the components is observed in the Al–Y system, (ΔHmix = –58.9 kJ/mol∙at), which is close enough to the maximum modulo value of the enthalpy of mixing in the Al–Er system. The weakest interaction is observed in the Al–Sc system (ΔHmix = –44.8 kJ/mol·at). The results obtained in this work provide a theoretical basis for further experimental study of erbium–containing aluminum alloys.

Rasplavy. 2024;(3):282-294
pages 282-294 views

Diffusion coefficients of Al2Cl7 in low temperature chloroaluminate melt based on triethylamine hydrochloride

Borozdin A., Elterman V.

Аннотация

With the growing demand for renewable energy sources, much of the research in the battery industry is focused on creating safe and high-capacity energy storage systems that can handle high current loads using inexpensive and readily available materials. The aluminum-ion batteries (AIB) are considered as one of the most promising systems. Such materials as aluminum metal, carbon materials and chloroaluminate ionic liquids are used as anode, cathode and electrolyte, respectively. A low-temperature chloroaluminate melt based on triethylamine hydrochloride (Et3NHCl) is promising and inexpensive electrolytes for AIBs. This melt has the ability to reversibly precipitate/dissolve aluminum metal due to the presence of the Al2Cl7 ion in it. However, the diffusion of Al2Cl7 ions in the Et3NHCl–AlCl3 system has not been studied previously. In the presented work, the concentration dependence of the diffusion coefficients of the Al2Cl7 anion was studied using chronopotentiometry in the concentration range N = 1.3–1.95 (where N is the molar ratio of aluminum chloride to organic salt). It was shown that diffusion coefficients increase with aluminum chloride content growth in the studied melt: from 1.71·10–7 (N = 1.3) to 4.50·10–7 cm2·s–1 (N = 1.95). This behavior can be caused by the viscosity decrease of the melts with Al2Cl7concentration growth. Based on the obtained results it can be concluded that Et3NHCl–AlCl3 with N = 1.95 is the most suitable electrolyte for AIB. Moreover, it was established that the electrochemical reduction of the Al2Cl7 on the surface of the aluminum electrode is complicated by the nucleation process, which has the lowest overvoltage at N = 1.95.

Rasplavy. 2024;(3):295-305
pages 295-305 views

Electrochemical production of zirconium silicides from KCl–K2SiF6–ZrO2 melt

Gevel T., Gorshkov L., Suzdaltsev A., Zaikov Y.

Аннотация

The unique properties of zirconium silicides attract the attention of a large number of authors from various scientific fields. Expansion of application methods also poses the challenge of developing new, more environmentally friendly and affordable methods of production. The most environmentally friendly method without equipment requirements is the electrolysis of the molten salt. The work proposes a method for producing zirconium silicides by electrolysis of the KCl–K2SiF6–ZrO2 melt. In order to substantiate the electrolysis parameters, the kinetics of cathodic reduction was studied and the limiting stage of the process was determined. The structure and phase composition of the cathode deposit were studied using X-ray diffraction and electron scanning microscopy. In the course of the work, conclusions were drawn about the change in the content of the ZrO2 additives on the morphology of the sediment, and it was also suggested that it was possible to obtain zirconium silicides from more accessible raw materials, such as zircon.

Rasplavy. 2024;(3):306-318
pages 306-318 views

In the LiCl-KCl melt at 500оС depending on the content of Li2О и LiOH

Seliverstov K., Nikitina E., Karfidov E., Dedyukhin A.

Аннотация

Molten alkali metal chlorides used in pyrotechnologies are aggressive corrosive agents. The high operating temperature of the process, the heterogeneity of the environment, and the significant corrosion activity of the molten salt necessitate both the search for stable structural materials and the development of methods for protecting the structural elements of high-temperature technological devices. Corrosion loss reduction techniques traditionally used in low temperature environments are not applicable at high temperatures.

The article examines the influence of oxygen-containing impurities (lithium oxide and hydroxide) on the corrosion behavior of metallic nickel (grade NP1) – the main component of candidate structural alloys, a thermodynamically and structurally stable material in the melt for the process of electrolytic refining of spent nuclear fuel. A method for preparing the LiCl–KCl salt electrolyte and obtaining lithium oxide by thermal decomposition of anhydrous lithium hydroxide under vacuum is described, and the concentrations of impurities in the electrolyte and the synthesized lithium oxide are determined. An installation for conducting corrosion tests in an inert atmosphere of a glove box is presented.

To assess the corrosion resistance of the material, the following were used: gravimetric analysis, X-ray diffraction analysis of the surface and cross-sectional sections, and X-ray diffraction analysis of the surface of the samples. The dependences of the corrosion rate of the material on the concentration of oxygen-containing additives Li2O and LiOH were obtained. Based on a combination of gravimetric, X-ray microspectral and X-ray phase analysis data, it was established that metallic nickel samples demonstrate high corrosion resistance in the studied melts with the introduction of Li2O and LiOH additives.

Rasplavy. 2024;(3):319-330
pages 319-330 views
pages 331-332 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».