The characteristic features of the auditory neurons responses in terrestrial vertebrates to species-specific communication calls (analytical review)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the main functions of sensory systems is the implementation of intraspecific communication, which often occurs through the exchange of communication calls. It is quite natural that the hypothesis arises that the radiation and reception of these signals should be coordinated. There is usually a certain similarity in the characteristics of specific communication sounds and the receiving devices of an auditory analyzer. However, the degree of such correspondence in the neural structures of the brain remains a subject of debate. The review examines studies aimed at solving the issue of specialized encoding of such signals in the brains of various terrestrial vertebrates, ranging from tailless amphibians to primates. For decades, researchers have been searching for neurons in the direct auditory pathway that could serve as detectors of communication signals. However, an analysis of the extensive literature does not reveal the existence of any clearly defined area of the direct auditory pathway that would be specialized for analyzing this category of sounds. It seems that the functional significance of the neurons of this pathway consists of highlighting many features of the temporal flow within the entire perceived spectral composition of sound. This process is carried out on the trained synaptic connections in the process of permanent evolution, determined by the sensory environment. Dynamically organized ensembles of neurons can be formed in the central parts of the direct auditory pathway, synchronously reacting to the action of a certain sound. It is precisely such ensembles that can be considered as output structures of an auditory analyzer, which can determine the perception and the corresponding motor reactions.

Texto integral

Acesso é fechado

Sobre autores

N. Bibikov

N.N. Andreev Acoustic Institute; A. A. Kharkevich Institute of Information Transmission Problems of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nbibikov1@yandex.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Akimov A.G. Kodirovaniye modeley krika diskomforta myshat populyatsiyey neyronov tsentral’nogo yadra zadnego kholma srednego mozga myshi (Mus musculus) [Encoding of pups’ wriggling call models by neuronal population of midbrain inferior colliculus central nucleus in house mouse (Mus musculus)] Zhurnal evolyutsionnoy biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 2013. V. 49. № 3. P. 233–236 (in Russian). https://doi.org/10.1134/S0022093013030122
  2. Bibikov N.G. Impul’snaya aktivnost’ neyronov torus semicircularis travyanoy lyagushki (Rana temporaria) [Impulse activity of neurons of the torus semicircularis grass frog (Rana temporaria)] Zhurnal evolyutsionnoy biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology].1974. V. 10. № 1. P. 40–47 (in Russian).
  3. Bibikov N.G. Reaktsiya neyronov polukruzhnogo torusa ozernoy lyagushki (Rana ridibunda) na nekotoryye kommunikatsionnyye signaly amfibiy. [Reaction of neurons of the semicircular torus of the lake frog (Rana ridibunda) to some communication signals of amphibians]. Zoologicheskiy zhurnal [Zoolog. Journal] 1987. V. 66. № 8. P. 1214–1223 (in Russian).
  4. Bibikov N.G. Aktivnost’ slukhovykh neyronov istmal’noy zony ozernoy lyagushki. [Activity of auditory neurons in the isthmal zone of the lake frog]. Sensornye sistemy [Sensory systems]. 2002. V. 16. № 1. P. 23–34 (in Russian).
  5. Bibikov N.G. Metody otsenki slukhovykh sposobnostey beskhvostykh amfibiy [Methods for assessing the hearing abilities of tailless amphibians]. Zoologicheskiy zhurnal [Zoolog. Journal]. 2019. V. 98. № 3. P. 285–301. https://doi.org/10.1134/S0044513419030048
  6. Adrian E.D., Craik K.J.W., Sturdy R.S. The electrical response of the auditory mechanism in cold-blooded vertebrates. Proceed. Royal Society London. 1938. V. 125. № 841. P. 435–455. https://doi.org/jstor.org/stable/i204892
  7. Akimov G., Egorova M.A., Ehret G. Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur. J.Neurosci. 2017. V. 46. № 3. P. 440–459. https://doi.org/10.1111/ejn.13488
  8. Aushana Y., Souffi S., Edeline J.-M., Lorenzi C., Huetz C. Robust neuronal discrimination in primary auditory cortex despite degradations of spectro-temporal acoustic details: comparison between guinea pigs with normal hearing and mild age-related hearing loss. J. Assoc. Res. Otolaryng. 2018. V. 19. № 2. P.163–180. https://doi.org/10.1007/s10162-017-0649-1
  9. Betancourth-Cundar M., Lima A.P., Hӧdl W., Amézquita A. Decoupled evolution between senders and receivers in the Neotropical Allobates femoralis frog complex. Plos One. 2016. V. 11. Article E0155929. https://doi.org/10.1371/journ al.pone.0155929
  10. Bibikov N.G. Auditory units in the medulla of the marsh frog with unusual patterns of spontaneous activity. J. Comp. Physiol. A. 1993. V. 173. № 1. P. 123–131. https://doi.org/10.1007/bf00209624
  11. Bibikov N.G., Elepfandt A. Auditory evoked potentials from medulla and midbrain in the clawed frog Xenopus laevis. Hear. Res. 2005. V. 204. P. 29–36. https://doi.org/10.1016/j.heares.2004.12.009
  12. Bibikov N.G. Nizamov S.V. Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grassfrog. Hear. Res. 1996. V. 101. № 1. P. 23–44. https://doi.org/10.1016/s0378-5955(96)00128-1
  13. Bibikov N.G. Nizamov S.V. Statistical characteristics of the spike activity of neurons in the midbrain auditory center in frogs on exposure to tones modulated by low-frequency noise. Neurosc. Behav. Physiol. 2018. V. 48. № 6. P. 764–773. https://doi.org/10.1007/s11055-018-0628-y
  14. Bibikov N.G. Addition of noise enhanced neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear. Res. 2002. V. 173. № 1. P. 21–28. https://doi.org/10.1016/s0378-5955(02)00456-2
  15. Bibikov N.G., Grubnik O.N. Responses to intensity increments and decrements in different types of midbrain auditory units of the frog. In: Acoustical signal processing in the central auditory system. New York. Plenum Press, 1997. P. 271–277. https://doi.org/10.1007/978-1-4419-8712
  16. Bizley J.K., Walker K.M.M., King A.J., Schnupp J.W.H. Neural ensemble codes for stimulus periodicity in auditory cortex. J. Neurosc. 2010. V. 30. № 14. P. 5078–5091. https://doi.org/10.1523/jneurosci.5475-09.2010
  17. Brittan-Powell E.F., Christensen-Dalsgaard J., Tang Y.Z., Carr C., Dooling R.J. The auditory brainstem response in two lizard species. J. Acoust. Soc. Amer. 2010. V. 128. P. 787–794. https://doi.org/10.1121/1.3458813
  18. Capranica R.R., Moffat A.J.M. Neurobehavioral correlates of sound communication in anurans. Advances in Vertebrate Neuroethology. Eds: Ewert J.-P., Capranica R.R., Ingle D.J. Springer US. Boston.1983. P. 701–730. https://doi.org/10.1007/978-1-4684- 4412-4_36
  19. Carruthers I.M., Laplagne D.A., Jaegle A., Briguglio J.J., Mwilambwe-Tshilobo L., Natan R.G., Geffen M.N. Emergence of invariant representation of vocalizations in the auditory cortex. J. Neurophysiol. 2015. V. 114. № 5. P.726–740. https://doi.org/10.1152/jn.00095.2015
  20. Chen J., Jono T., Cui J., Yue X., Tang Y. The acoustic properties of low intensity vocalizations match hearing sensitivity in the webbed-toed gecko Gekko subpalmatus. Plos ONE. 2016. V. 11. Article E0146677. https://doi.org/10.1371/journal.pone.0146677
  21. Cobo-Cuan A., Narins P.M. Reciprocal matched filtering in the inner ear of the african clawed frog (Xenopus laevis). J. Ass. Res. Otolaryng. 2020. V. 21. P. 33–42. https://doi.org/10.1007/s1016 2-019-00740-4
  22. De Charms R.C., Merzenich M.M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature.1996. V. 381. P. 610–613. https://doi.org/10.1038/381610a0
  23. De Cheveigne A. The auditory system as a “separation machine”. Physiological and psychophysical bases of auditory function. Eds: Breebart D.J., Houtsma A.J.M., Kohlrausch A., Prijs V.F., Schoonhoven R. Maastricht. 2001. P. 453–460.
  24. Egorova M., Akimov A. Specialization of neurons with different response patterns in the mouse Mus Musculus auditory midbrain and primary auditory cortex during communication call processing. J. Evol. Biochem. Physiol. 2020. V. 56. P. 406–414. https://doi.org/10.1134/S0022093020050038
  25. Ehret G., Geissler D. Communication-call representation in the mouse auditory cortex: perception vs. recognition. Plasticity and Signal Representation in the Auditory System. 2005. P. 85–96. https://doi.org/10.1007/0-387-23181-1-8
  26. Eliades S.J., Tsunada J. Auditory cortical activity drives feedback-dependent vocal control in marmosets. Nature Comm. 2018. V. 9. № 1. P.1–13. https://doi.org/10.1038/s41467-018-04961-8
  27. Eliades S.J., Wang X. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear. Res. 2017. V. 348. P. 98–111. https://doi.org/10.1016/j.heares.2017.03.001
  28. Endler J.A. Some general comments on the evolution and design of animal communication systems. Philosoph. Transactions: Biol. Sciences.1993. V. 340. P. 215–225. https://doi.org/10.1098/rstb.1993.0060
  29. Frishkopf L.S., Capranica R.R., Goldstein M.H.J. Neural coding in the bullfrog’s auditory system – a teleological approach. Proceedings IEEE.1968. V. 56. № 6. P. 969–980. https://doi.org/10.1109/proc.1968.6448
  30. Fuzesseryz M., Feng A.S. Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. Pipiens): Single and multiunit analyses. J. Comp. Physiol. 1983. V. 150. P. 333–344. https://doi.org/10.1007/BF00605023
  31. Gadziola M.A., Grimsley J.M.S, Shanbhag S.J., Wenstrup J.J. A novel coding mechanism for social vocalizations in the lateral amygdala. J. Neurophysiol. 2012. V. 107. P. 1047–1057. https://doi.org/10.1152/jn.00422.2011
  32. Gansel K.S. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front. Integr. Neurosci. 2022. V. 16. Article 900715. https://doi.org/10.3389/fnint.2022.900715
  33. Gaucher Q., Huetz C., Gourévitch B., Edeline J.M. Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. J. Neurosci. 2013а. V. 33. № 26. P. 10713–10728. https://doi.org/10.1523/jneurosci.0079-13.2013
  34. Gaucher Q., Huetz C., Gourévitch B., Laudanski J., Occelli F., Edeline J.M. How do auditory cortex neurons represent communication sounds? Hear Res. 2013b. V. 305. P.102–112. https://doi.org/10.1016/j.heares.2013.03.011
  35. Gehr D.D., Komiya H., Eggermont J.J. Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls. Hear Res. 2000. V. 150. P. 27–42. https://doi.org/10.1016/s0378-5955(00)00170-2
  36. Geissler D.B., Ehret. G. Time-critical integration of formants for perception of communications calls in mice. Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 9021–9025. https://doi.org/10.1073/pnas.122606499
  37. Glass I., Wollberg Z. Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Exp. Brain Res.1979. V. 34. P. 489–498. https://doi.org/10.1007/BF00239144
  38. Gourévitch B., Eggermont J.J. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J. Neurophysiol. 2007. V. 97. № 1. P. 144–158. https://doi.org/10.1152/jn.00807.2006
  39. Goutte S., Mason M.J., Christensen-Dalsgaard J., Montealegre F., Chivers B., Sarria F.A., Antoniazzi M.M., Jared C., Satol A., Toledo L.F. Evidence of auditory insensitivity to vocalization frequencies in two frogs. Scientific Reports. 2017. V. 7. Article 12121. https://doi.org/10.1038/s4159 8-017-12145-5
  40. Grimsley J.M.S., Shanbhag S.J., Palmer A.R., Wallace M.N. Processing of communication calls in guinea pig auditory cortex. Plos ONE. 2012a. V. 7. Article e51646. https://doi.org/10.1371/journal.pone.0051646
  41. Grimsley J.M.S., Palmer A.R., Wallace M.N. Different representations of tooth chatter and purr call in guinea pig auditory cortex. Neuroreport. 2011b. V. 22. № 12. P. 613–616. https://doi.org/10.1097/WNR.0b013e3283495ae9
  42. Grimsley J.M.S., Palmer A.R., Wallace M.N. Age differences in the purr call distinguished by units in the adult guinea pig primary auditory cortex. Hear. Res. 2011a. V. 277. P. 134–142. https://doi.org/10.1016/j.heares.2011.01.018
  43. Gupta S., Alluri R.K., Rose G.J., Bee M.A. Neural basis of acoustic species recognition in a cryptic species complex. J. Exp. Biol. 2021. V. 224. № 23. Article Jeb243405. https://doi.org/10.1242/jeb.243405
  44. Hall J.C. Feng A.S. Evidence for parallel processing in the frog’s auditory thalamus. J. Comp. Neurol. 1987. V. 258. № 3. P. 407–419. https://doi.org/10.1002/cne.902580309. PMID: 3495555.
  45. Huetz C., Philibert B., Edeline J.-M. A spike timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J. Neurosci. 2009. V. 29. P. 334–350. https://doi.org/10.1523/jneurosci.3269-08.2009
  46. Huetz C., Gourevitch B., Edeline J.-M. Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hear Res. 2011. V. 271. P. 147–158. https://doi.org/10.1016/j.heares.2010.01.010
  47. Jia G., Bai S., Lin Y., Wang X., Zhu L., Lyu C, Sun G., An K., Roe A.W., Li X., Gao L. Representation of conspecific vocalizations in amygdala of awake marmosets. Natl. Sci. Rev. 2023. V. 10. Article nwad194. https://doi.org/10.1093/nsr/nwad194
  48. Kar M., Pernia M., Williams K. et al. Vocalization categorization behavior explained by a feature-based auditory categorization model. Elife. 2022. V. 11. Article E78278. https://doi.org/10.7554/elife.78278
  49. Kanwal J.S., Rauschecker J.P. Auditory cortex of bats and primates: managing species-specific calls for social communication. Frontiers in Bioscience. 2007. V. 12. P. 4621–4640. https://doi.org/10.2741/2413
  50. Kusmierek P., Rauschecker J.P. Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J. Neurophysiol. 2009. V. 102. P. 1606–1622. https://doi.org/10.1152/jn.00167.2009
  51. Labra A., Reyes-Olivares C., Moreno-Gómez F.N., Velásquez N.A., Penna M., Delano P.H., Narins P.M. Geographic variation in the matching between call characteristics and tympanic sensitivity in the Weeping lizard. Ecol. Evol. 2021. V. 11. № 24. P. 18633–18650. https://doi.org/10.1002/ece3.8469
  52. Lee N., Schrode K.M., Bee M.A. Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus. J. Comp. Physiol. S.A. 2017. V. 203. № 9. P. 749–772. https://doi.org/10.1007/s00359-017-1195-3
  53. Lettvin J.Y., Maturana H.R., Mcculloch W.S., Pitts W. What the frog’s eye tells the frog’s brain. Proceedings of the IRE. 1959. V. 47. P. 1940–1951. https://doi.org/10.1109/jrproc.1959.287207
  54. Lu S., Steadman M, Ang G.W.Y., Kozlov A. Composite receptive fields in the mouse auditory cortex. J. Physiol. 2023. V. 601. №.18. P. 4091–4104. https://doi.org/10.1113/JP285003
  55. Ma H., Qin L., Dong C., Zhong R., Sato Y. Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory field of awake cats. Plos ONE. 2013. V. 8. P. E52942. https://doi.org/10.1371/journal.pone.0052942
  56. Manley G., Kraus J. Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J. Exp. Biology. 2010. V. 213. P. 1876–1885. https://doi.org/10.1242/jeb.040196
  57. Manley J.A., Muller-Preuss P. Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp. Brain Res. 1978. V. 32. № 2. P. 171–180. https://doi.org/10.1007/bf00239725
  58. Mathevon N., Vergne A., Aubin T. Acoustic communication in crocodiles: How do juvenile calls code information? Proceed. Meetings. Acoust. 2013. V. 19. Article 010001. https://doi.org/10.1121/1.4799192
  59. Medvedev A.V., Kanwal J.S. Local field potentials and spiking activity in the primary auditory cortex in response to social calls. J. Neurophysiol. 2004. V. 92. № 1. P. 52–65. https://doi.org/10.1152/jn.01253.2003
  60. Metzen M.G., Jamali M., Carriot J., Ávila-Ǻkerberg O., Cullen K.E., Chacron M.J. Coding of envelopes by correlated but not single-neuron activity requires neural variability. Proceed. Nat. Acad. Sciences. 2015. V. 112. № 15. P. 4791–4796. https://doi.org/10.1073/pnas.1418224112
  61. Miller C.T., Thomas A.W., Nummela S.U., de la Mothe L.A. Responses of primate frontal cortex neurons during natural vocal communication. J. Neurophysiol. 2015. V. 114. № 2. P. 1158–1171. https://doi.org/10.1152/jn.01003.2014
  62. Montes-Lourido P., Kar M., David S.V., Sadagopan S. Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex. Plos Biol. 2021. V. 19. E3001299. https://doi.org/10.1371/journal.pbio.300129
  63. Montes-Lourido P., Kar M., Pernia M., Parida S., Sadagopan S. Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range. Hear Res. 2022. V. 424. 108603. https://doi.org/10.1016/j.heares.2022.108603
  64. Mudry K.M., Capranica R.R. Correlation between auditory evoked responses in the thalamus and species-specific call characteristics. J. Comp. Physiol. 1987. V. 160. P. 477–489. https://doi.org/10.1007/BF00615081
  65. Nelken I.A., Fishbach L., Las L., Ulanovsky N., Farkas D. Primary auditory cortex of cats: feature detection or something else? Biol. Cyber. 2003. V. 89. P. 397–406. https://doi.org/10.1007/s00422-003-0445-3
  66. Newman J.D., Wollberg Z. Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Exp. Neurol. 1973a. V. 40. P. 821–824. https://doi.org/10.1016/0014-4886(73)90116-7
  67. Newman J.D., Wollberg Z. Multiple coding of species-specific vocalizations in the auditory cortex of squirrel monkeys. Brain Res. 1973b. V. 54. P. 287–304. https://doi.org/10.1016/0006-8993(73)90050-4
  68. Penna M., Velásquez N.A., Bosc J. Dissimilarities in auditory tuning in midwife toads of the genus Alytes (Amphibia: Anura). Biol. J. Linnean Society. 2015. V. 116. P. 41–51. https://doi.org/10.1111/bij.12563
  69. Petkov C.I., Kayser C., Steudel T., Whittingstall K., Augath M., Logothetis N.K. A voice region in the monkey brain. Nat Neurosci. 2008. V. 1. P. 367–374. https://doi.org/10.1038/nn2043
  70. Philibert B., Laudanski J., Edeline J.-M. Auditory thalamus responses to guinea pig vocalizations: a comparison between rat and guinea pig. Hear Res. 2005. V. 209. P. 97–103. https://doi.org/10.1016/j.heares.2005.07.004
  71. Peterson D.C., Wenstrup J.J. Selectivity and persistent firing responses to social vocalizations in the basolateral amygdala. Neuroscience. 2012. V. 17. P. 154–171. https://doi.org/10.1016/j.neuroscience.2012. 04.069
  72. Plakke B., Diltz M.D., Romanski L.M. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex. Hear. Res. 2013. V. 305. P. 135–143. https://doi.org/10.1016/j.heares.2013.07.011
  73. Poremba A., Bigelow J., Rossi B. Processing of communication sounds: contributions of learning, memory, and experience. Hear. Res. 2013. V. 305. P. 31–34. https://doi.org/10.1016/j.heares.2013.06.005
  74. Portfors C.V., Roberts P.D., Jonson K. Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 2009. V. 162. P. 486–500. https://doi.org/10.1016/j.neuroscience.2009.04.056
  75. Potter H.D. Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. J. Neurophysiol. 1965. V. 28. № 6. P. 1155–1184. https://doi.org/10.1152/jn.1965.28.6.1155
  76. Qin L., Wang J.Y., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008. V. 99. P. 2305–2319. https://doi.org/10.1152/jn.01125.2007
  77. Rauschecker J.P. Parallel processing in the auditory cortex of primates. Audiol. Neurotol. 1998. V. 3. № 2-3. P. 86–103. https://doi.org/10.1159/000013784
  78. Recanzone G.H. Representation of conspecific vocalizations in the core and belt areas of the auditory cortex in the alert macaque monkey. J. Neurosci. 2008. V. 28. P. 13184–13193. https://doi.org/10.1523/JNEUROSCI.3619-08.2008
  79. Remedios R., Logothetis N.K. Kayser C. An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. J. Neurosci. 2009. V. 29. P. 1034–1045. https://doi.org/10.1523/JNEUROSCI.4089-08.2009
  80. Roberts P.D., Portfors C.V. Responses to social vocalizations in the dorsal cochlear nucleus of mice. Front. Syst. Neurosci. 2015. V. 9. P. 172–175. https://doi.org/10.3389/fnsys.2015.00172
  81. Romanski L.M., Averbeck B.B. The primate cortical auditory system and neural representation of conspecific vocalizations. Ann. Rev. Neurosci. 2009. V. 32. P. 315–346. https://doi.org/10.1146/annurev.neuro.051508.135431
  82. Romanski L.M., Averbeck B.B., Diltz M. Neural representation of vocalizations in the primate ventrolateral prefrontal cortex J. Neurophysiol. 2005. V. 93. P. 734–747. https://doi.org/10.1152/jn.00675.2004
  83. Roy S., Zhao L., Wang X. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World primate. The common marmoset (Callithrix jacchus). J. Neurosci. 2016. V. 36. P. 12168–12179. https://doi.org/10.1523/JNEUROSCI.1646-16.2016
  84. Royer J., Huetz C., Occelli F., Cancela J.M., Edeline J.M. Enhanced discriminative abilities of auditory cortex neurons for pup calls despite reduced evoked responses in c57bl/6 mother mice. Neuroscience. 2021. V. 453. P. 1–16. https://doi.org/10.1016/j.neuroscience.2020.11.031
  85. Sangiamo D.T., Warren M.R., Neunuebel J.P. Ultrasonic signals associated with different types of social behavior of mice. Nature Neurosci. 2020. V. 23. P. 411–422. https://doi.org/10.1038/s41593-020-0584-z
  86. Sadagopan S., Wang X. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 2009. V. 29. № 36. P. 11192–11202. https://doi.org/10.1038/s41593-020-0584-z
  87. Schnupp. J.W.H., Hall T.M. et al. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J. Neurosci. 2006. V. 26. № 18. P. 4785–4795. https://doi.org/10.1523/jneurosci.4330-05.2006
  88. Souffi S., Lorenzi C., Varnet L., Huetz C., Edeline J.M. Noise-sensitive but more precise subcortical representations coexist with robust cortical encoding of natural vocalizations. J. Neurosci. 2020. V. 40. № 27. P. 5228–5246. https://doi.org/10.1523/JNEUROSCI.2731-19.2020
  89. Sovijarvi A.R.A. Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol. Scand. 1975. V. 93. P. 318–335. https://doi.org/10.1111/j.1748-1716.1975.tb05821.x
  90. Steinschneider M., Nourski K.V., Fishman Y.I. Representation of speech in human auditory cortex: is it special? Hear Res. 2013. V. 305. P. 57–73. https://doi.org/10.1016/j.heares.2013.05.013
  91. Suta J., Kvasiniak E., Popelar J., Syka J. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 2003. V. 90. P. 3794–3808. https://doi.org/10.1152/JN.01175.2002
  92. Suta D., Popelar J., Kvasniak E., Syka J. Representation of species-specific vocalizations in the medial geniculate body of the guinea pig. Exp. Brain Res. 2007. V. 183. P. 377–388. https://doi.org/10.1007/s00221-007-1056-3
  93. Syka J., Suta D., Popelar J. Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs. Hear. Res. 2005. V. 206. P. 177–184. https://doi.org/10.1016/j.heares.2005.01.013
  94. Tanaka H., Taniguchi I. Responses of medial geniculate neurons to species-specific vocalized sounds in the guinea pig. Jap. J. Physio. 1991. V. 41. № 6. P. 817–829. https://doi.org/10.2170/jjphysiol.41.817
  95. Tian B., Reser D., Durham A., Kustov A., Rauschecker J.P. Functional specialization in rhesus monkey auditory cortex. Science. 2001. V. 292. P. 290–293. https://doi.org/10.2307/3082738
  96. Tonini J.F.R., Provete D.B., Maciel N.M., Morais A.R., Goutte S., Toledo L.F., Pyron R.A. Allometric escape from acoustic constraints is rare for frog calls. Ecology Evol. 2020. V. 10. P. 3686–3695. https://doi.org/10.1002/ece3.6155
  97. Velásquez N.A., Valdes J.L., Vasquez R.A., Penna M. Lack of phonotactic preferences of female frogs and its consequences for signal evolution. Behav. Process. 2015. V. 118. P. 76–84. https://doi.org/10.1016/j.beproc.2015.06.001
  98. Velásquez N.A., Moreno-Gómez F.N., Brunett E., Penna M. The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better. Scientific Reports. 2018. V. 8. Article 6990. https://doi.org/10.1038/s41598-018-25359-y
  99. Vergne A.L., Thierry A., Martin S., Mathevon N. Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition. 2012. V. 15. P. 1095–1109. https://doi.org/10.1007/s1007 1-012-0533-7
  100. Wallace M.N., Palmer A.R. Functional subdivisions in low-frequency primary auditory cortex (A1). Exp. Brain Res. 2009. V. 194. P. 395–408. https://doi.org/10.1007/s00221-009-1714-8
  101. Wallace M.N., Shackleton T.M., Anderson L.A., Palmer A.R. Representation of the purr call in the guinea pig primary auditory cortex. Hear Res. 2005. V. 204. P. 115–126. https://doi.org/10.1016/j.heares.2005.01.007
  102. Wang X., Wang D., Wu X., Wang C., Wang R., Xia T. Response specificity to advertisement vocalization in the Chinese alligator (Alligator sinensis). Ethology. 2009. V. 115. P. 832–839. https://doi.org/10.1111/j.1439-0310.2009.01671.x
  103. Wilczynski W., Ryan M.J. The behavioral neuroscience of anuran social signal processing. Curr. Opin. Neurobiol. 2010. V. 20. № 6. P. 754–763. https://doi.org/10.1016/j.conb.2010.08.021
  104. Wilczynski W., Keddy-Hector A.C., Ryan M.J. Call patterns and basilar papilla tuning in cricket frogs. 1. Differences among populations and between sexes. Brain Behavior. Evol. 1992. V. 39. № 4. P. 229–237. https://doi.org/10.1159/000114120
  105. Winter P., Funkenstein H.H. The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Exp. Brain Res. 1973. V. 18. P. 489–504. https://doi.org/10.1007/BF00234133
  106. Wollberg Z., Newman J.D. Auditory cortex of squirrel monkey: response patterns of single cells to species-specific vocalizations. Science. 1972. V. 175. P. 212–214. https://doi.org/10.2307/1733054
  107. Zhao L., Wang J., Yang Y., Zhu B., Brauth S.E., Tang Y., Cui J. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol. Evol. 2016. V. 7. P. 419–428. https://doi.org/10.1002/ece3.2621
  108. Ziegler L., Arim M., Narins P. Linking amphibian call structure to the environment: The interplay between phenotypic flexibility and individual attributes. Behav. Ecol. 2011. V. 22. P. 520–526. https://doi.org/10.1093/beheco/arr011

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies