К вопросу о специфике реакции нейронов слуховой системы наземных позвоночных на видовые коммуникационные стимулы (аналитический обзор)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Одной из основных функций сенсорных систем является осуществление внутривидового общения, которое часто проходит путем обмена коммуникационными звуковыми сигналами. Естественно возникает гипотеза о том, что излучение и прием этих сигналов должны быть согласованы. В самом деле, обычно наблюдается сходство характеристик звуков видового общения и приемных устройств слухового анализатора. Однако степень такого соответствия в нейронных структурах головного мозга остается предметом оживленных дискуссий. В обзоре рассматриваются исследования, направленные на решение вопроса о специализированном кодировании видовых сигналов у разных наземных позвоночных. В течение многих десятилетий исследователи стремились найти нейроны, служащие детекторами сигналов внутривидового общения. Однако анализ литературы не выявляет существования областей прямого слухового пути, специализированных для выделения только этой категории звуков. Представляется, что функция нейронов, составляющих его ядра, состоит в выделении особенностей временного течения звуков, воспринятых слуховым нервом. Этот процесс осуществляется на обучаемых синаптических связях в процессе перманентной эволюции, определяемой сенсорным окружением. В центральных отделах могут формироваться динамически организуемые ансамбли нейронов, синхронно реагирующих при действии определенного звука. Такие ансамбли могут рассматриваться в качестве выходных структур слухового анализатора, определяющих восприятие сигнала и моторные реакции организма.

Полный текст

Доступ закрыт

Об авторах

Н. Г. Бибиков

Акустический институт им. акад. Н. Н. Андреева; Институт проблем передачи информации им. А. А. Харкевича РАН

Автор, ответственный за переписку.
Email: nbibikov1@yandex.ru
Россия, Москва; Москва

Список литературы

  1. Акимов А.Г. Кодирование моделей крика дискомфорта мышат популяцией нейронов центрального ядра заднего холма среднего мозга мыши (Mus musculus). Журн. эвол. биохим. и физиол. 2013. Т. 49. № 3. С. 233–236.
  2. Бибиков Н.Г. Импульсная активность нейронов torus semicircularis травяной лягушки (Rana temporaria) Журн. эвол. биохим. и физиол. 1974. Т. 10. № 1. С. 40–47.
  3. Бибиков Н.Г. Реакция нейронов полукружного торуса озерной лягушки (Rana r. ridibunda) на некоторые коммуникационные сигналы амфибий. Зоолог. журн. 1987. Т. 66. № 8. С. 1214–1223.
  4. Бибиков Н.Г. Активность слуховых нейронов истмальной зоны озерной лягушки. Сенсорные системы. 2002. Т. 16. № 1. С. 23–34.
  5. Бибиков Н.Г. Методы оценки слуховых способностей бесхвостых амфибий. Зоолог. журн. 2019. Т. 98. № 3. С. 285–301. https://doi.org/10.1134/S0044513419030048
  6. Adrian E.D., Craik K.J.W., Sturdy R.S. The electrical response of the auditory mechanism in cold-blooded vertebrates. Proceed. Royal Society London. 1938. V. 125. № 841. P. 435–455. https://doi.org/jstor.org/stable/i204892
  7. Akimov.G., Egorova M.A., Ehret G. Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur. J.Neurosci. 2017. V. 46. № 3. P. 440–459. https://doi.org/10.1111/ejn.13488.
  8. Aushana Y., Souffi S., Edeline J.-M., Lorenzi C., Huetz C. Robust neuronal discrimination in primary auditory cortex despite degradations of spectro-temporal acoustic details: comparison between guinea pigs with normal hearing and mild age-related hearing loss. J. Assoc. Res. Otolaryng. 2018. V. 19. № 2. P. 163–180. https://doi.org/10.1007/s10162-017-0649-1.
  9. Betancourth-Cundar M., Lima A.P., Hӧdl W., Amézquita A. Decoupled evolution between senders and receivers in the Neotropical Allobates femoralis frog complex. Plos One. 2016. V. 11. P. E0155929. https://doi.org/10.1371/journ al.pone.0155929
  10. Bibikov N.G. Auditory units in the medulla of the marsh frog with unusual patterns of spontaneous activity. J. Comp. Physiol. A. 1993. V. 173. №. 1. P. 123–131. https://doi.org/10.1007/bf00209624
  11. Bibikov N.G., Elepfandt A. Auditory evoked potentials from medulla and midbrain in the clawed frog Xenopus laevis. Hear. Res. 2005. V. 204. P. 29–36. https://doi.org/10.1016/j.heares.2004.12.009
  12. Bibikov N.G. Nizamov S.V. Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grassfrog. Hear. Res. 1996. V. 101. № 1. P. 23–44. https://doi.org/10.1016/s0378-5955(96)00128-1
  13. Bibikov N.G. Nizamov S.V. Statistical characteristics of the spike activity of neurons in the midbrain auditory center in frogs on exposure to tones modulated by low-frequency noise. Neurosc. Behav. Physiol. 2018. V. 48. № 6. P. 764–773. https://doi.org/10.1007/s11055-018-0628-y
  14. Bibikov N.G. Addition of noise enhanced neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear. Res. 2002. V. 173. № 1. P. 21–28. https://doi.org/10.1016/s0378-5955(02)00456-2
  15. Bibikov N.G., Grubnik O.N. Responses to intensity increments and decrements in different types of midbrain auditory units of the frog. Acoustical signal processing in the central auditory system. New York. Plenum Press.1997. P. 271–277. https://doi.org/10.1007/978-1-4419-8712.
  16. Bizley J.K., Walker K.M. M., King A.J., Schnupp J.W.H. Neural ensemble codes for stimulus periodicity in auditory cortex. J. Neurosc. 2010. V. 30. № 14. P. 5078–5091. https://doi.org/10.1523/jneurosci.5475-09.2010
  17. Brittan-Powell E.F., Christensen-Dalsgaard J., Tang Y.Z., Carr C., Dooling R.J. The auditory brainstem response in two lizard species. J. Acoust. Soc. Amer. 2010. V. 128. P.787–794. https://doi.org/10.1121/1.3458813
  18. Capranica R.R., Moffat A.J.M. Neurobehavioral correlates of sound communication in anurans. Advances in Vertebrate Neuroethology. Eds: Ewert J.P., Capranica R.R., Ingle D.J. Springer US. Boston.1983. P. 701–730. https://doi.org/10.1007/978-1-4684-4412-4_36
  19. Carruthers I.M., Laplagne D.A., Jaegle A., Briguglio J.J., Mwilambwe-Tshilobo L., Natan R.G., Geffen M.N. Emergence of invariant representation of vocalizations in the auditory cortex. J. Neurophysiol. 2015. V. 114. № 5. P. 726–740. https://doi.org/10.1152/jn.00095.2015.
  20. Chen J., Jono T., Cui J., Yue X., Tang Y. The acoustic properties of low intensity vocalizations match hearing sensitivity in the webbed-toed gecko Gekko subpalmatus. Plos ONE. 2016. V. 11. P. E0146677. https://doi.org/10.1371/journal.pone.0146677
  21. Cobo-Cuan.A., Narins P.M. Reciprocal matched filtering in the inner ear of the african clawed frog (Xenopus laevis). J. Ass. Res. Otolaryng. 2020. V. 21. P. 33–42. https://doi.org/10.1007/s1016 2-019-00740-4
  22. De Charms R.C., Merzenich M.M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature.1996. V. 381. P. 610–613. https://doi.org/10.1038/381610a0
  23. De Cheveigne A. The auditory system as a “separation machine”. Physiological and psychophysical bases of auditory function. Eds: Breebart D.J., Houtsma A.J.M., Kohlrausch A., Prijs V.F., Schoonhoven R. Maastricht. 2001. P. 453–460.
  24. Egorova M., Akimov A. Specialization of neurons with different response patterns in the mouse Mus Musculus auditory midbrain and primary auditory cortex during communication call processing. J. Evol. Biochem. Physiol. 2020. V. 56. P. 406–414. https://doi.org/10.1134/S0022093020050038.
  25. Ehret G., Geissler D. Communication-call representation in the mouse auditory cortex: perception vs. recognition // In the book “Plasticity and Signal Representation in the Auditory System”. 2005. P. 85–96. https://doi.org/10.1007/0-387-23181-1-8
  26. Eliades S.J., Tsunada J. Auditory cortical activity drives feedback-dependent vocal control in marmosets. Nature Comm. 2018. V. 9. №.1. P.1–13. https://doi.org/10.1038/s41467-018-04961-8
  27. Eliades S.J., Wang X. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear. Res. 2017. V. 348. P. 98–111. https://doi.org/10.1016/j.heares.2017.03.001
  28. Endler J.A. Some general comments on the evolution and design of animal communication systems. Philosoph. Transactions: Biol.Sciences.1993. V. 340. P. 215–225. https://doi.org/10.1098/rstb.1993.0060
  29. Frishkopf L.S., Capranica R.R., Goldstein M.H.J. Neural coding in the bullfrog’s auditory system – a teleological approach. Proceedings IEEE. 1968. V. 56. № 6. P. 969–980. https://doi.org/10.1109/proc.1968.6448
  30. Fuzesseryz M., Feng A.S. Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. Pipiens): Single and multiunit analyses. J. Comp. Physiol. 1983. V. 150. P. 333–344. https://doi.org/10.1007/BF00605023
  31. Gadziola M.A., Grimsley J.M.S, Shanbhag S.J., Wenstrup J.J. A novel coding mechanism for social vocalizations in the lateral amygdala. J. Neurophysiol. 2012. V. 107. P. 1047–1057. https://doi.org/10.1152/jn.00422.2011
  32. Gansel K.S. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front. Integr. Neurosci. 2022. V. 16. P. 900715. https://doi.org/10.3389/fnint.2022.900715
  33. Gaucher Q., Huetz C., Gourévitch B., Edeline J.M. Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. J. Neurosci. 2013а. V. 33. №. 26. P.10713–10728. https://doi.org/10.1523/jneurosci.0079-13.2013
  34. Gaucher Q., Huetz C., Gourévitch B., Laudanski J., Occelli F., Edeline J.M. How do auditory cortex neurons represent communication sounds? Hear Res. 2013b. V. 305. P. 102–112. https://doi.org/10.1016/j.heares.2013.03.011
  35. Gehr D.D., Komiya H., Eggermont J.J. Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls. Hear Res. 2000.V. 150. P. 27–42. https://doi.org/10.1016/s0378-5955(00)00170-2
  36. Geissler D.B., Ehret. G. Time-critical integration of formants for perception of communications calls in mice. Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 9021–9025. https://doi.org/10.1073/pnas.122606499
  37. Glass I., Wollberg Z. Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Exp. Brain Res.1979. V. 34. P. 489–498. https://doi.org/10.1007/BF00239144
  38. Gourévitch B., Eggermont J.J. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J. Neurophysiol. 2007. V. 97. № 1. P. 144–158. https://doi.org/10.1152/jn.00807.2006.
  39. Goutte S., Mason M.J., Christensen-Dalsgaard J., Montealegre F., Chivers B., Sarria F.A., Antoniazzi M.M., Jared C., Toledo L.F. Evidence of auditory insensitivity to vocalization frequencies in two frogs. Scientific Reports .2017. V. 7. Article 12121. https://doi.org/10.1038/s4159 8-017-12145-5
  40. Grimsley J.M.S., Shanbhag S.J., Palmer A.R., Wallace M.N. Processing of communication calls in guinea pig auditory cortex. Plos ONE. 2012a. V. 7. Article e51646. https://doi.org/10.1371/journal.pone.0051646
  41. Grimsley J.M.S., Palmer A.R., Wallace M.N. Different representations of tooth chatter and purr call in guinea pig auditory cortex. Neuroreport. 2011b. V. 22. № 12. P. 613–616. https://doi.org/10.1097/WNR.0b013e3283495ae9
  42. Grimsley J.M.S., Palmer A.R., Wallace M.N. Age differences in the purr call distinguished by units in the adult guinea pig primary auditory cortex. Hear. Res. 2011a. V. 277. P. 134–142. https://doi.org/10.1016/j.heares.2011.01.018
  43. Gupta S., Alluri R.K., Rose G.J., Bee M.A. Neural basis of acoustic species recognition in a cryptic species complex. J. Exp. Biol. 2021. V. 224. № 23. Article Jeb243405. https://doi.org/10.1242/jeb.243405
  44. Hall J.C., Feng A.S. Evidence for parallel processing in the frog’s auditory thalamus. J. Comp. Neurol. 1987. V. 258. № 3. P. 407–419. https://doi.org/10.1002/cne.902580309. PMID: 3495555.
  45. Huetz C., Philibert B., Edeline J.-M. A spike timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J. Neurosci. 2009. V. 29. P. 334–350. https://doi.org/10.1523/jneurosci.3269-08.2009
  46. Huetz C., Gourevitch B., Edeline J.-M. Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hear Res. 2011. V. 271. P. 147–158. https://doi.org/10.1016/j.heares.2010.01.010
  47. Jia G., Bai S., Lin Y., Wang X., Zhu L., Lyu C., Sun G., An K., Roe A.W., Li X., Gao L. Representation of conspecific vocalizations in amygdala of awake marmosets. Natl. Sci. Rev. 2023. V. 10. Article nwad194. https://doi.org/10.1093/nsr/nwad194.
  48. Kar M., Pernia M., Williams K. et al. Vocalization categorization behavior explained by a feature-based auditory categorization model. Elife. 2022. V. 11. E78278. https://doi.org/10.7554/elife.78278
  49. Kanwal J.S., Rauschecker J.P. Auditory cortex of bats and primates: managing species-specific calls for social communication. Frontiers in Bioscience. 2007. V. 12. P. 4621–4640. https://doi.org/10.2741/2413
  50. Kusmierek P., Rauschecker J.P. Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J. Neurophysiol. 2009. V. 102. P. 1606–1622. https://doi.org/10.1152/jn.00167.2009
  51. Labra A., Reyes-Olivares C., Moreno-Gómez F.N., Velásquez N.A., Penna M., Delano P.H., Narins P.M. Geographic variation in the matching between call characteristics and tympanic sensitivity in the Weeping lizard. Ecol. Evol. 2021. V. 11. № 24. P. 18633–18650. https://doi.org/10.1002/ece3.8469
  52. Lee N., Schrode K.M., Bee M.A. Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus. J. Comp. Physiol. S.A. 2017. V. 203. № 9. P. 749–772. https://doi.org/10.1007/s00359-017-1195-3
  53. Lettvin J.Y., Maturana H.R., Mcculloch W.S., Pitts W. What the frog’s eye tells the frog’s brain. Proceedings of the IRE. 1959. V. 47. P. 1940–1951. https://doi.org/10.1109/jrproc.1959.287207
  54. Lu S., Steadman M, Ang. G.W.Y., Kozlov A. Composite receptive fields in the mouse auditory cortex. J. Physiol. 2023. V. 601. № 18. P. 4091–4104. https://doi.org/10.1113/JP285003
  55. Ma H., Qin L., Dong C., Zhong R., Sato Y. Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory field of awake cats. Plos ONE. 2013. V. 8. Article E52942. https://doi.org/10.1371/journal.pone.0052942
  56. Manley G., Kraus J. Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J. Exp.Biology. 2010. V. 213. P. 1876–1885. https://doi.org/10.1242/jeb.040196
  57. Manley J.A., Muller-Preuss P. Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp. Brain Res. 1978. V. 32. № 2. P. 171–180. https://doi.org/10.1007/bf00239725
  58. Mathevon N., Vergne A., Aubin T. Acoustic communication in crocodiles: How do juvenile calls code information? Proceed. Meet. Acoust. 2013. V. 19. Article 010001. https://doi.org/10.1121/1.4799192
  59. Medvedev A.V., Kanwal J.S. Local field potentials and spiking activity in the primary auditory cortex in response to social calls. J. Neurophysiol. 2004. V. 92. № 1. P. 52–65. https://doi.org/10.1152/jn.01253.2003
  60. Metzen M.G., Jamali M., Carriot J., Ávila-Ǻkerberg O., Cullen K.E., Chacron M.J. Coding of envelopes by correlated but not single-neuron activity requires neural variability. Proceed. Nat. Acad. Sciences. 2015. V. 112. № 15. 4791–4796. https://doi.org/10.1073/pnas.1418224112
  61. Miller C.T., Thomas A.W., Nummela S.U., de la Mothe L.A. Responses of primate frontal cortex neurons during natural vocal communication. J. Neurophysiol. 2015. V. 114. № 2. P. 1158–1171. https://doi.org/10.1152/jn.01003.2014
  62. Montes-Lourido P., Kar M., David S.V., Sadagopan S. Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex. Plos. Biol. 2021. V. 19. Article E3001299. https://doi.org/10.1371/journal.pbio.300129
  63. Montes-Lourido P., Kar M., Pernia M., Parida S., Sadagopan S. Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range. Hear Res. 2022. V. 424. Article 108603. https://doi.org/10.1016/j.heares.2022.108603
  64. Mudry K.M., Capranica R.R. Correlation between auditory evoked responses in the thalamus and species-specific call characteristics. J. Comp. Physiol. 1987. V. 160. P. 477–489. https://doi.org/10.1007/BF00615081
  65. Nelken I.A., Fishbach L., Las L., Ulanovsky N., Farkas D. Primary auditory cortex of cats: feature detection or something else? Biol. Cyber. 2003. V. 89. P. 397–406. https://doi.org/10.1007/s00422-003-0445-3
  66. Newman J.D., Wollberg Z. Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Exp. Neurol. 1973a. V. 40. P. 821–824. https://doi.org/10.1016/0014-4886(73)90116-7
  67. Newman J.D., Wollberg Z. Multiple coding of species-specific vocalizations in the auditory cortex of squirrel monkeys. Brain Res. 1973b. V. 54. P. 287–304. https://doi.org/10.1016/0006-8993(73)90050-4
  68. Penna M., Velásquez N.A., Bosc J. Dissimilarities in auditory tuning in midwife toads of the genus Alytes (Amphibia: Anura). Biol. J. Linnean Society. 2015. V. 116. P. 41–51. https://doi.org/10.1111/bij.12563
  69. Petkov C.I., Kayser C., Steudel T., Whittingstall K., Augath M., Logothetis N.K. A voice region in the monkey brain. Nat. Neurosci. 2008. V. 1. P. 367–374. https://doi.org/10.1038/nn2043
  70. Philibert B., Laudanski J., Edeline J.-M. Auditory thalamus responses to guinea pig vocalizations: a comparison between rat and guinea pig. Hear Res. 2005. V. 209. P. 97–103. https://doi.org/10.1016/j.heares.2005.07.004
  71. Peterson D.C., Wenstrup J.J. Selectivity and persistent firing responses to social vocalizations in the basolateral amygdala. Neuroscience. 2012. V. 17. P. 154–171. https://doi.org/10.1016/j.neuroscience.2012. 04.069
  72. Plakke B., Diltz M.D., Romanski L.M. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex. Hear. Res. 2013. V. 305. P. 135–143. https://doi.org/10.1016/j.heares.2013.07.011
  73. Poremba A., Bigelow J., Rossi B. Processing of communication sounds: contributions of learning, memory, and experience. Hear. Res. 2013. V. 305. P. 31–34. https://doi.org/10.1016/j.heares.2013.06.005
  74. Portfors C.V., Roberts P. D, Jonson K. Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 2009. V. 162. P. 486–500. https://doi.org/10.1016/j.neuroscience.2009.04.056
  75. Potter H.D. Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. J. Neurophysiol. 1965. V. 28. № 6. P. 1155–1184. https://doi.org/10.1152/jn.1965.28.6.1155
  76. Qin L., Wang J.Y., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008. V. 99. P. 2305–2319. https://doi.org/10.1152/jn.01125.2007
  77. Rauschecker J.P. Parallel processing in the auditory cortex of primates. Audiol. Neurotol. 1998. V. 3. № 2-3. P. 86–103. https://doi.org/10.1159/000013784
  78. Recanzone G.H. Representation of conspecific vocalizations in the core and belt areas of the auditory cortex in the alert macaque monkey. J. Neurosci. 2008. V. 28. P. 13184–13193. https://doi.org/10.1523/JNEUROSCI.3619-08.2008
  79. Remedios R., Logothetis N.K. Kayser C. An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. J. Neurosci. 2009. V. 29. P. 1034–1045. https://doi.org/10.1523/JNEUROSCI.4089-08.2009
  80. Roberts P.D., Portfors C.V. Responses to social vocalizations in the dorsal cochlear nucleus of mice. Front. Syst. Neurosci. 2015. V. 9. Р.172–177. https://doi.org/10.3389/fnsys.2015.00172
  81. Romanski L.M., Averbeck B.B. The primate cortical auditory system and neural representation of conspecific vocalizations. Ann. Rev. Neurosci. 2009. V. 32. P. 315–346. https://doi.org/10.1146/annurev.neuro.051508.135431
  82. Romanski L.M., Averbeck B.B., Diltz M. Neural representation of vocalizations in the primate ventrolateral prefrontal cortex J. Neurophysiol. 2005. V. 93. P. 734–747. https://doi.org/10.1152/jn.00675.2004
  83. Roy S., Zhao L., Wang X. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World primate. The common marmoset (Callithrix jacchus). J. Neurosci. 2016. V. 36. P. 12168–12179. https://doi.org/10.1523/JNEUROSCI.1646-16.2016
  84. Royer J., Huetz C., Occelli F., Cancela J.M., Edeline J.M. Enhanced discriminative abilities of auditory cortex neurons for pup calls despite reduced evoked responses in c57bl/6 mother mice. Neuroscience. 2021. V. 453. P. 1–16. https://doi.org/10.1016/j.neuroscience.2020.11.031.
  85. Sangiamo D.T., Warren M.R., Neunuebel J.P. Ultrasonic signals associated with different types of social behavior of mice. Nature Neurosci. 2020. V. 23. P. 411–422. https://doi.org/10.1038/s41593-020-0584-z
  86. Sadagopan S., Wang X. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 2009. V. 29. № 36. P. 11192–11202. https://doi.org/10.1038/s41593-020-0584-z
  87. Schnupp. J.W H., Hall T.M. et al. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J. Neurosci. 2006. V. 26. № 18. P. 4785–4795. https://doi.org/10.1523/jneurosci.4330-05.2006
  88. Souffi S., Lorenzi C., Varnet L., Huetz C., Edeline J.M. Noise-sensitive but more precise subcortical representations coexist with robust cortical encoding of natural vocalizations. J. Neurosci. 2020. V. 40. № 27. P. 5228–5246. https://doi.org/10.1523/JNEUROSCI.2731-19.2020
  89. Sovijarvi A.R.A. Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol. Scand. 1975. V. 93. P. 318–335. https://doi.org/10.1111/j.1748-1716.1975.tb05821.x
  90. Steinschneider M., Nourski K.V., Fishman Y.I. Representation of speech in human auditory cortex: is it special? Hear Res. 2013. V. 305. P. 57–73. https://doi.org/10.1016/j.heares.2013.05.013
  91. Suta J., Kvasiniak E., Popelar J., Syka J. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 2003. V. 90. P. 3794–3808. https://doi.org/10.1152/JN.01175.2002
  92. Suta D., Popelar J., Kvasniak E., Syka J. Representation of species-specific vocalizations in the medial geniculate body of the guinea pig. Exp. Brain Res. 2007. V. 183. P. 377–388. https://doi.org/10.1007/s00221-007-1056-3
  93. Syka J., Suta D., Popelar J. Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs. Hear. Res. 2005. V. 206. P. 177–184. https://doi.org/10.1016/j.heares.2005.01.013
  94. Tanaka H., Taniguchi I. Responses of medial geniculate neurons to species-specific vocalized sounds in the guinea pig. Jap. J. Physio. 1991. V. 41. № 6. P. 817–829. https://doi.org/10.2170/jjphysiol.41.817.
  95. Tian B., Reser D., Durham A., Kustov A., Rauschecker J.P. Functional specialization in rhesus monkey auditory cortex. Science. 2001. V. 292. P. 290–293. https://doi.org/10.2307/3082738
  96. Tonini J.F.R., Provete D.B., Maciel N.M., Morais A.R., Goutte S., Toledo L.F., Pyron R.A. Allometric escape from acoustic constraints is rare for frog calls. Ecology Evol. 2020. V. 10. P. 3686–3695. https://doi.org/10.1002/ece3.6155
  97. Velásquez N.A., Valdes J.L., Vasquez R.A., Penna M. Lack of phonotactic preferences of female frogs and its consequences for signal evolution. Behav. Process. 2015. V. 118. P. 76–84. https://doi.org/10.1016/j.beproc.2015.06.001
  98. Velásquez N.A., Moreno-Gómez F.N., Brunett E., Penna M. The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better. Scientific Reports.2018. V. 8. P. 6990. https://doi.org/10.1038/s41598-018-25359-y
  99. Vergne A.L., Thierry A., Martin S., Mathevon N. Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition. 2012. V. 15. P. 1095–1109. https://doi.org/10.1007/s1007 1-012-0533-7
  100. Wallace M.N., Palmer A.R. Functional subdivisions in low-frequency primary auditory cortex (A1). Exp. Brain Res. 2009. V. 194. P. 395–408. https://doi.org/10.1007/s00221-009-1714-8
  101. Wallace M.N., Shackleton T.M., Anderson L.A., Palmer A.R. Representation of the purr call in the guinea pig primary auditory cortex. Hear Res. 2005. V. 204. P. 115–126. https://doi.org/10.1016/j.heares.2005.01.007
  102. Wang X., Wang D., Wu X., Wang C., Wang R., Xia T. Response specificity to advertisement vocalization in the Chinese alligator (Alligator sinensis). Ethology. 2009. V. 115. P. 832–839. https://doi.org/10.1111/j.1439-0310.2009.01671.x
  103. Wilczynski W., Ryan M.J. The behavioral neuroscience of anuran social signal processing. Curr. Opin. Neurobiol. 2010. V. 20. № 6. P. 754–763. https://doi.org/10.1016/j.conb.2010.08.021
  104. Wilczynski W., Keddy-Hector A.C., Ryan M.J. Call patterns and basilar papilla tuning in cricket frogs. 1. Differences among populations and between sexes. Brain Behavior. Evol. 1992. V. 39. № 4. P. 229–237. https://doi.org/10.1159/000114120
  105. Winter P., Funkenstein H.H. The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Exp. Brain Res. 1973. V. 18. P. 489–504. https://doi.org/10.1007/BF00234133.
  106. Wollberg Z., Newman J.D. Auditory cortex of squirrel monkey: response patterns of single cells to species-specific vocalizations. Science. 1972. V. 175. P. 212–214. https://doi.org/10.2307/1733054
  107. Zhao L., Wang J., Yang Y., Zhu B., Brauth S.E., Tang Y., Cui J. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol. Evol. 2016. V. 7. P. 419–428. https://doi.org/10.1002/ece3.2621
  108. Ziegler L., Arim M., Narins P. Linking amphibian call structure to the environment: The interplay between phenotypic flexibility and individual attributes. Behav. Ecol. 2011. V. 22. P. 520–526. https://doi.org/10.1093/beheco/arr011

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах