Clinical physiology of the central parts of the visual system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is a review of literature related to anatomy and function of the central visual pathways from the optic nerves, chiasm, optic tracts, lateral genicular body to the higher cortical centers. The focus is on the presenting clinical syndromes and subsequent lesion localization.

In this review the evidence for retrograde trans-synaptic degeneration following acquired post-geniculate human visual pathway damage are discussed and proved by optical coherence tomography data. It has been shown that knowledge of the anatomy and functions of the central parts of the visual system allows to determine both the topic of the pathological process in the brain, and to evaluate the results of surgical and radiation treatment.

Full Text

Restricted Access

About the authors

N. K. Serova

N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: nserova@nsi.ru
Russian Federation, Moscow

References

  1. Bajandas F.J., McBeath J.B., Smith J.L. Congenital homonymous hemianopia. Am. J. Ophthalmol. 1976. V. 82(3). P. 498–500. https://doi.org/10.1016/0002-9394(76)90502-x
  2. Ebeling U. Reulen H. Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir. 1988. V. 92 (1-4). P. 29–36. https://doi.org/10.1007/BF01401969
  3. Eliseeva N.M. Spektralinay opticheskay kogerentnay tomografiy pri porazenii razlichnuch uchastkov zritelinogo puti [Spectral optical coherence tomography in lesions of various parts of the visual pathway]. Materialy XX nauchno-prakticheskoj nejrooftal’mologicheskoj konferencii. Moscow. 2020. P. 9–11 (in Russia).
  4. Eliseeva N.M., Pitskhelauri D.I., Serova N.K. Naruschenie poly zreniy posle operachii po povodu visochnoi epilepsii, obuslovlennoi sklerozom gippokampa. [Disturbance of the visual field after surgery for temporal lobe epilepsy due to hippocampal sclerosis]. Voprosy Neirokhirurgii [Neurosurgery issues]. 2019. V. 83(5). P. 14–20 (in Russia).
  5. Eliseeva N.M., Serova N.K., Erichev V.P., Panyushkina L.A. Strukturnue izmeneniy setchatki i zritelynogo nerva pri porazenii centralynogo nevrona zritelinogo puti [Structural changes in the retina and optic nerve in lesions of the central neuron of the optic pathway]. Vestnik ophthalmologii [Bulletin of Ophthalmology]. 2017. V. 133(4). P. 25–30 (in Russia).
  6. Eliseeva N.M., Serova N.K., Pitskhelauri D.I. Retrograde degeneration of the optic pathway. Voprosy Neirokhirurgii. 2021. V. 85(6). P. 92–96 (in Russia).
  7. Gutzwiller E., Cabrilo I., Radovanovich I. Intraoperative monitoring with visual evoked potentials for brain surgeries. J. Neurosurg. 2018. V. 130(2). P. 654–660. https://doi.org/10.3171/2017.8.JNS171168
  8. Horton J.C., Hoyt W.F. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991. V. 109(6). P. 816–824. https://doi.org/10.1001/archopht.1991.01080060080030
  9. Hoyt W., Rios-Montenegro E., Behrens M. Homonymous hemioptic hypoplasia: Fundoscopic features in standard and red-free illumination in three patients with congenital hemiplegia. Br. J. Ophthalmol. 1972. V. 56(7). P. 537–545. https://doi.org/10.1136/bjo.56.7.537
  10. Hubel D. Eye, brain and vision. Moscow: MIR, 1990. 239 p. (in Russia).
  11. Bajandas F.J., McBeath J.B., Smith J.L. Congenital homonymous hemianopia. Am. J. Ophthalmol. 1976. V. 82. № 3. P. 498–500. https://doi.org/10.1016/0002-9394(76)90502-x
  12. Ebeling U., Reulen H. Neurosurgical topography of the optic radiation in the tempo-ral lobe. Acta Neurochir. 1988. V. 92. № 1-4. P. 29–36. https://doi.org/10.1007/BF01401969
  13. Gutzwiller E., Cabrilo I., Radovanovich I. Intraoperative monitoring with visual evoked potentials for brain surgeries. J. Neurosurg. 2018. V. 130. № 2. P. 654–660. https://doi.org/10.3171/2017.8.JNS171168
  14. Horton J.C., Hoyt W.F. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991. V. 109. № 6. P. 816–824. https://doi.org/10.1001/archopht.1991.01080060080030
  15. Hoyt W., Rios-Montenegro E., Behrens M. Homonymous hemioptic hypoplasia: Fundoscopic features in standard and red-free illumination in three patients with congenital hemiplegia. Br. J. Ophthalmol. 1972. V. 56. № 7. P. 537–545. https://doi.org/10.1136/bjo.56.7.537
  16. Jindahra P., Petrie A., Plant G. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012. V. 135. № 2. P. 534–541. https://doi.org/10.1093/brain/awr324
  17. Jindahra P., Petrie A., Plant G. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain. 2009. V. 132. № 3. P. 628–634. https://doi.org/10.1093/brain/awp001
  18. Kamada K., Todo T., Morita A. Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery. 2005. V. 57. № 1. P. 121–127. https://doi.org/10.1227/01.neu.0000163526.60240.b6
  19. Keller J., Sánchez-Dalmau B.F., Villoslada P. Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS One. 2014. V. 9. № 5. P. e97444. https://doi.org/10.1371/journal.pone.0097444
  20. Kline L.B. Anatomy and physiology of the optic tracts and lateral geniculate nucleus. In: Walsh & Hoyt Neuroophthalmology. Eds 5 by N. Miller, N. Newman. The Williams&Wilkins Baltimore. 1998. V. 1. № 5. P. 101–120.
  21. Livingston C.A., Mustari M.J. The anatomical organization of the macaque pregeniculate complex. Brain Res. 2000. V. 876. № 1-2. P. 166–179. https://doi.org/10.1016/s0006-8993(00)02647-0
  22. McFadzean R., Brosnahan D., Hadley D., Mutlukan E. Representation of the visual field in the occipital striate cortex. Br. J. Ophthalmol. 1994. V. 78. № 3. P. 185–190. https://doi.org/10.1136/bjo.78.3.185
  23. Meier P.G., Maeder P., Kardon R.H., Borruat F. Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. J. Neuro-Ophthalmol. 2015. V. 35. № 2. P. 112–116. https://doi.org/10.1097/WNO.0000000000000182
  24. Murray M.M., Thelen A., Thut G. The multisensory function of the human primary visual cortex. Neuropsychologia. 2016. V. 83. P. 161–169. https://doi.org/10.1016/j.neuropsychologia.2015.08.011
  25. Ota T., Kawai K., Kamada J. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J. Neurosurg. 2010. V. 112. № 2. P. 285–294. https://doi.org/10.3171/2009.6.JNS081272
  26. Pasupathy A., Connor C.E. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophys Sci. 2001. V. 86. № 5. P. 2505–2519. https://doi.org/10.1152/jn.2001.86.5.2505
  27. Rizzo J.F. Embryology, Anatomy, and Physiology of the Afferent Visual Pathway. In: Walsh & Hoyt’s Clinical Neuro-Ophthalmology. 6th ed. by N. Miller, N. Newman. Lippincott Williams & Wilkins Copyright. 2005. V.I. Sec. I. P. 4–82.
  28. Tong F. Primary visual cortex and visual awareness. Nat. Rev. Neurosci. 2003. V. 4. № 3. P. 219–229. https://doi.org/10.1038/nrn1055
  29. Wall M. Optic radiations and occipital cortex. In: Walsh & Hoyt Neuroophthalmolog. Ed. 5 by N. Miller, N. Newman. Williams & Wilkins Baltimore.1998. V.1. № 6. P. 121–151.
  30. Zhaoping Li. A new framework for understanding vision from the perspective of the primary visual cortex. Curr Opin Neurobiol. 2019. V. 58. P. 1–10. https://doi.org/10.1016/j.conb.2019.06.001

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies