Experimental Approaches to the Study of Sound Sources Localization by Distance in Hearing Pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The overview presents modern experimental approaches that are used to assess the ability to localize sound sources by distance in hearing pathology. The influence of the typical manifestations of hearing impairment on the processes of identifying the main localization cues – the signal level, the spectral features, binaural characteristics in auditory perception of the distance to stationary and moving sound or speech sources is considered. The review introduce to the results of the authors' own research and literature data on changes in hearing resolution by distance in sensorineural hearing loss, unilateral hearing loss, central auditory disorders, including age-related aspects of the problem. The compensatory potential of the auditory spatial function in non-invasive and invasive hearing aids, as well as its training with elements of acoustic virtual reality, is described. A methodical approach to forming of spatial scenes available for implementation in clinical practice is proposed.

About the authors

E. A. Ogorodnikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: ogorodnikovaea@infran.ru
Russia, 199034, St. Petersburg, Makarov emb., 6

E. A. Klishova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: ogorodnikovaea@infran.ru
Russia, 194223, St. Petersburg, pr. M. Torez, 44

I. G. Andreeva

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: ogorodnikovaea@infran.ru
Russia, 194223, St. Petersburg, pr. M. Torez, 44

References

  1. Altman J.A. Prostranstvennyj sluh [Spatial hearing]. SPb: Institut fiziologii im. I.P. Pavlova RAN [Pavlov Institute of Physiology RAS]. 2011. 311 p. (in Russian).
  2. Altman J.A., Andreeva I.G. Vospriyatie priblizheniya i udaleniya zvukovogo obraza pod raznymi azimutal’nymi uglami pri monaural’nom proslushivanii. [Perception of approach and withdrawing of a sound image at different azimuthal angles during monaural listening] Sensory systems. 2000. V. 14 (1). P. 11–17 (in Russian).
  3. Altman J.A., Tavartkiladze G.A. Rukovodstvo po audiologii. [Handbook on audiology]. M.: DMK Press, 2003. P. 360 (in Russian).
  4. Andreeva I.G. Virtual’naya akusticheskaya real’nost': psikhoakusticheskie issledovaniya. [Virtual Acoustic Reality: Psychoacoustic Research] Sensory systems. 2004а. V. 18 (3). P. 251–264 (in Russian).
  5. Andreeva I.G. Porogovaya dlitel’nost’ signalov pri vospriyatii chelovekom radial’nogo dvizheniya zvukovykh obrazov razlichnogo spektral’nogo sostava. [Threshold duration of signals during human perception of radial motion of sound images of different spectral composition] Sensory systems. 2004b. V. 18 (3). P. 233–238 (in Russian).
  6. Andreeva I.G., Gvozdeva A.P., Ogorodnikova E.A. Porogovaya dlitel’nost' zvukovykh signalov dlya otsenki priblizheniya i udaleniya ikh istochnika pri modelirovanii snizheniya vysokochastotnogo slukha. [Threshold duration of sound signals for their sources approaching and withdrawing under condition of high-frequency hearing loss modeling] Sensory systems. 2018. V. 32 (4). P. 277–284. https://doi.org/10.1134/S0235009218040029 (in Russian).
  7. Andreeva I.G., Klishova E.A., Gvozdeva A.P., Golovanova L.E. Metod otsenki vremennykh pokazatelei prostranstvennogo slukha pri sensonevral’noi tugoukhosti 2-3 stepeni. [A method for assessing temporal indicators of spatial hearing in sensorineural hearing loss of 2–3 degrees] Trudy XXXII-i Sessii Rossiiskogo Akusticheskogo Obshchestva [Proceedings of the XXXII-th Session of the Russian Acoustic Society]. М.: GEOS. 2019. P. 840–845 (in Russian).
  8. Andreeva I.G., Sitdikov V.M., Gvozdeva A.P., Ogorodnikova E.A., Golovanova L.E., Klishova E.A. Sposob skriningovoi otsenki sposobnosti cheloveka k razlicheniyu polozheniya istochnikov zvuka po rasstoyaniyu. [A method for screening assessment of a human’s ability to distinguish between the position of sound sources by distance] Patent RF. № 2754342. 2021. (in Russian).
  9. Andreeva I.G., Sitdikov V.M., Ogorodnikova E.A. Eksperimental’nyye podkhody k izucheniyu lokalizatsii istochnikov zvuka po rasstoyaniyu. [Experimental methods to study the sound source localization by distance in humans]. Sensory systems. 2023. V. 37 (3). P. 183–204. https://doi.org/10.31857/S0235009223030022 (in Russian).
  10. Babiyak V.I., Nakatis J.A. Klinicheskaya otorinolaringologiya: Rukovodstvo dlya vrachei. [Clinical otorhinolaryngology: A guide for physicians.] SPb: Gippokrat. 2005. 800 p. (in Russian).
  11. Boboshko M.J., Garbaruk E.S., Zhilinskaya E.V., Salakhbekov M.A. Tsentral’nye slukhovye rasstroistva (obzor literatury). [Central auditory processing disorders (literature review)] Russian otorhinolaryngology. 2014. V. 5. P. 87 (in Russian).
  12. Vartanyan I.A. Slukhovoi analiz slozhnykh zvukov. [Auditory analysis of complex sounds.] Leningrad: Nauka [The science]. 1978. 151 p. (in Russian).
  13. Gvozdeva A.P., Andreeva I.G. Metod otsenki vremennykh pokazatelei prostranstvennogo slukha pri sensonevral’noi tugoukhosti 2–3 stepeni. [Method for assessing temporal indicators of spatial hearing in sensorineural hearing loss of 2–3 degrees] Materialy XXXII Sessii Rossiiskogo Akusticheskogo Obshchestva. [Materials of the XXXII Session of the Russian Acoustic Society.] M., 2019. P. 113 (in Russian).
  14. Gvozdeva A.P., Klishova E.A., Golovanova L.E., Andreeva I.G. Porogovaya dlitel’nost' zvukovykh signalov dlya otsenki priblizheniya i udaleniya ikh istochnika v norme i pri sensonevral’noy tugoukhosti 2-3-y stepeni [Threshold duration of audio signals for assessment of approaching and receding of their source in normal condition and in 2nd and 3rd degree sensorineural hearing loss]. Russian Otorhinolaryngology. 2020а. V. 19 (1). P. 19–24. https://doi.org/10.18692/1810-4800-2020-1-19-24 (in Russian).
  15. Gvozdeva A.P., Sitdikov V.M., Andreeva I.G. Skriningovyi metod otsenki prostranstvennoi i vremennoi razreshayushchei sposobnosti slukha pri lokalizatsii dvizheniya po azimutal’noi koordinate. [Screening method for assessing the spatial and temporal resolution of hearing in the localization of movement along the azimuthal coordinate] Russian Journal of Physiology. 2020б. V. 106 (9). P. 1170–1188. https://doi.org/10.31857/S0869813920090113 (in Russian).
  16. Golovanova L.E., Boboshko M.J., Kvasov E.A., Lapteva E.S. Tugoukhost’ u vzroslogo naseleniya starshikh vozrastnykh grupp. [Hearing loss in the adult population of older age groups]. Uspekhi gerontologii [Advances in gerontology]. 2019. V. 32 (1–2). P. 166–173. Режим доступа: http://www.gersociety.ru/netcat_files/userfiles/10/AG_2019-32-01-02.pdf (in Russian).
  17. Klishova E.A., Gvozdeva A.P., Golovanova L.E., Andreeva I.G. Vremennye kharakteristiki lokalizatsii istochnika zvuka, dvizhushchegosya po azimutu, u patsientov s legkoi i umerennoi sensonevral’noi tugoukhost’yu. [Temporal Characteristics of Azimuthally Moving Sound Source Localization in Patients with Mild and Moderate Sensorineural Hearing Loss.] Russian Journal of Physiology. 2021. V. 107 (12). P. 1568–1582. https://doi.org/10.31857/S0869813921120049 (in Russian).
  18. Koroleva I.V. Osnovy audiologii i slukhoprotezirovaniya. [Fundamentals of audiology and hearing aid]. SPb.: KARO, 2022. 448 p. (in Russian).
  19. Koroleva I.V., Ogorodnikova E.A., Pak S.P..Levin S.V., Baliakova A.A., Shaporova A.V. Metodicheskiye podkhody k otsenke dinamiki razvitiya protsessov slukhorechevogo vospriyatiya u detey s kokhlearnymi implantami. [Methodological approaches to assessing the dynamics of the development of hearing and speech perception processes in children with cochlear implants] Russian Otorhinolaryngology. 2013. N 3. P. 75–85. (in Russian).
  20. Koroleva I.V., Ogorodnikova E.A., Levin S.V., Pak S.P., Kusovkov V.E., Yanov J.K. Ispol’zovaniye psikhoakusticheskikh testov dlya pertseptivnoy otsenki nastroyki protsessora kokhlearnogo implanta u glukhikh patsiyentov [Using of psychoacoustic tests for perceptual assessment of processor fitting in patients with cochlear implants] Vestnik Oto-Rino-Laringologii [Bulletin of Otorhinolaryngology]. 2021. V. 86 (1). P. 30–35. https://doi.org/10.17116/otorino20218601130 (in Russian).
  21. Kunel’skaya N.L., Levina Iu.V., Garov E.V., Dzuina A.V., Ogorodnikov D.S., Nosulia E.V., Luchsheva Yu.V. Presbiakuzis – aktual’naya problema stareyushchego naseleniya [Presbycusis is the actual problem of the aging population] Vestnik Oto-Rino-Laringologii [Bulletin of Otorhinolaryngology]. 2019. V. 84 (4). P. 67–71. https://doi.org/10.17116/otorino20198404167 (in Russian).
  22. Ogorodnikova E.A., Koroleva I.V., Pak S.P. Vospriyatiye prostranstvennykh kharakteristik zvukovykh signalov patsiyentami posle odnostoronney kokhlearnoy implantatsii [Perception of spatial characteristics of sound signals by patients after unilateral cochlear implantation] Psychophysiology news. 2020. V. 3. P. 195–199 (in Russian).
  23. Ogorodnikova E.A., Koroleva I.V., Pak S.P. Sposob reabilitatsii funktsii akusticheskoi orientatsii i ee otsenki u patsientov s kokhlearnym implantom. [Method for Rehabilitation of Acoustic Orientation Function and Its Assessment in Patients with Cochlear Implant.] Patent RF. № 2265426. 2005 (in Russian).
  24. Ogorodnikova E.A., Pak S.P. Razlichenie chelovekom skorosti dvizheniya pri frontal’nom priblizhenii istochnika zvuka. [Distinguishing by a person the speed of movement when the sound source is approached frontally.] Human physiology. 1998. V. 24 (2). P. 51–55 (in Russian).
  25. Pak S.P., Ogorodnikova E.A. Formirovanie akusticheskikh stimulov, modeliruyushchikh dvizhenie istochnika zvuka pri ego priblizhenii i udalenii. [Formation of acoustic stimuli that simulate the movement of a sound source as it approaches and moves away.] Sensory systems. 1997. V. 11 (3). P. 346–351 (in Russian).
  26. Parenko M.K., Antipenko E.A., Kuznetsova I.A., Shcherbakov V.I. Vospriyatie dikhoticheski pred"yavlyaemykh zvukovykh shchelchkov pri distsirkulyatornoi entsefalopatii. [Perception of dichotically presented sound clicks in dyscirculatory encephalopathy.] Sensory systems. 2009. V. 23 (3). P. 208–218 (in Russian).
  27. Press release of WHO (World Health Organization.). 2021. https://www.who.int/news/item/02-03-2021-who-1-in-4-people-projected-to-have-hearing-problems-by-2050 (access date 9.03.2023).
  28. Sitdikov V.M., Gvozdeva A.P., Andreeva I.G. Differentsial’nye porogi slukha pri lokalizatsii dvizhushchikhsya i nepodvizhnykh istochnikov zvuka dlya rasstoyanii, tipichnykh pri kommunikatsii. [Differential hearing thresholds for the localization of moving and stationary sound sources for distances typical in communication.] Trudy Vserossiiskoi akusticheskoi konferentsii [Proceedings of the All-Russian Acoustic Conference]. SPb. POLITEKh-PRESS. 2020. P. 336–339. (in Russian).
  29. Adel Ghahraman M., Ashrafi M., Mohammadkhani G., Jalaie S. Effects of aging on spatial hearing. Aging clinical and experimental research. 2020. V. 32 (4). P. 733–739. https://doi.org/10.1007/s40520-019-01233-3
  30. Aggius-Vella E., Gori M., Campus C., Moore B.C.J., Pardhan S., Kolarik A.J., Van der Stoep N. Auditory distance perception in front and rear space. Hearing Research. 2022. V. 417: 108468. https://doi.org/10.1016/j.heares.2022
  31. Ahveninen J., Kopčo N., Jääskeläinen I.P. Psychophysics and neuronal bases of sound localization in humans. Hearing research. 2014. V. 307. P. 86–97. https://doi.org/10.1016/j.heares.2013.07.008
  32. Akeroyd M.A. An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners. Trends in Hearing. 2014. V. 18: 2331216514560442. https://doi.org/10.1177/2331216514560442
  33. Akeroyd M.A. The effect of hearing-aid compression on judgments of relative distance. J. Acoust. Soc. Am. 2010. V. 127 (1). P. 9–12. https://doi.org/10.1121/1.3268505
  34. Akeroyd M.A., Gatehouse S., Blaschke J. The detection of differences in the cues to distance by elderly hearing-impaired listeners. J. Acoust. Soc. Am. 2007. V. 121 (2). P. 1077–1089. https://doi.org/10.1121/1.2404927
  35. Altman J.A., Andreeva I.G. Monaural perception and binaural perception of approaching and withdrawing auditory images in humans. Int. J. Audiol. 2004. V. 43 (4). P. 227–235. https://doi.org/10.1080/14992020400050031
  36. Altman Y.A., Kotelenko L.M., Fed’ko L.I., Shustin V.A. Subjective acoustic field of patients with cortical temporal lobe epilepsy as revealed using signals simulating various directions of sound movement. Human Physiology. 2004. V. 30. P. 152–158. https://doi.org/10.1023/B:HUMP.0000021642.52947.a2
  37. Altmann C.F., Ono K., Callan A., Matsuhashi M., Mima T., Fukuyama H. Environmental reverberation affects processing of sound intensity in right temporal cortex. European Journal of Neuroscience. 2013. V. 38 (8). P. 3210–3220.
  38. Altman J., Rosenblum A., Lvova V. Lateralization of a moving auditory image in patients with focal damage of the brain hemispheres. J. Neuropsychol. 1987. V. 25 (2). P. 435.
  39. Amann E., Anderson I. Development and validation of a questionnaire for hearing implant users to self-assess their auditory abilities in everyday communication situations: the Hearing Implant Sound Quality Index (HISQUI19). Acta Oto-Laryngologica. 2014. V. 134 (9). P. 915–923. https://doi.org/10.3109/00016489.2014.909604
  40. Andreeva I.G. Spatial selectivity of hearing in speech recognition in speech-shaped noise environment. Hum Physiol. 2018. V. 44 (2). P. 226–236. https://doi.org/10.1134/S0362119718020020
  41. Andreeva I.G., Klishova E.A., Gvozdeva A.P., Sitdikov V.M., Golovanova L.E., Ogorodnikova E.A. Comparative assessment of spatial and temporal resolutions in the localization of an approaching and receding broadband noise source in healthy subjects and patients with first-degree symmetric sensorineural hearing loss. Human Physiology. 2020. V. 46 (5). P. 465–472. https://doi.org/10.1134/S0362119720040039
  42. Andreeva I.G., Orlov V.A., Ushakov V.L. Activation of multimodal areas in the human cerebral cortex in response to biological motion sounds. Journal of Evolutionary Biochemistry and Physiology. 2018. V. 54. P. 363–373.
  43. Baumgartner R., Majdak P., Laback B. Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends Hear. 2016. V. 20. Special issue. P. 1. https://doi.org/10.1177/2331216516662003
  44. Boyd A.W., Whitmer W.M., Soraghan J.J., Akeroyd M.A. Auditory externalization in hearing-impaired listeners: The effect of pinna cues and number of talkers. The Journal of the Acoustical Society of America. 2012. V. 131 (3). P. 268. https://doi.org/10.1121/1.3687015
  45. Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants. Neuropsychol. Rev. 2014. V. 24 (2). P. 236–251.
  46. Brimijoin W.O., Akeroyd M.A. The moving minimum audible angle is smaller during self motion thanduring source motion. Frontiers in Neuroscience. 2014. V. 8. P. 273. https://doi.org/10.3389/fnins.2014.00273
  47. Bronkhorst A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception & Psychophysics. 2015. V. 77 (5). P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  48. Burkhard M. Non hearing-aid uses of the KEMAR manikin. Manikin Measurements. Industrial Research Products Inc. 1978. P. 63–65.
  49. Carlile S., Leung J. The perception of auditory motion. Trends in hearing. 2016. 20: 2331216516644254. https://doi.org/10.1177/2331216516644254
  50. Chandler D.W., Grantham D.W. Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity. J. Acoust. Soc. Am. 1992. V. 91 (3). P. 1624–1636. https://doi.org/10.1121/1.402443
  51. Coudert A., Gaveau V., Gatel J., Verdelet G., Salemme R., Farne A., Pavani F., Truy E. Spatial hearing difficulties in reaching space in bilateral cochlear implant children improve with head movements. Ear & Hearing. 2021. V. 43 (1). P. 192–205. https://doi.org/10.1097/AUD.0000000000001090
  52. Coudert A., Verdelet G., Reilly K.T., Truy E., Gaveau V. Intensive training of spatial hearing promotes auditory abilities of bilateral cochlear implant adults: a pilot study. Ear and Hearing. 2022. https://doi.org/10.1097/AUD.0000000000001256
  53. Courtois G., Grimaldi V., Lissek H., Estoppey P., Georganti E. Perception of auditory distance in normal-hearing and moderate-to-profound hearing-impaired listeners. Trends in Hearing. 2019. V. 23. P. 1–18. https://doi.org/10.1177/2331216519887615
  54. Ernst A., Anton K., Brendel M., Battmer R-D. Benefit of directional microphones for unilateral, bilateral and bimodal cochlear implant users. Cochlear Implants International. 2019. V. 20 (9). P. 1–11. https://doi.org/10.1080/14670100.2019.1578911
  55. Fischer N., Weber B., Riechelmann H. Presbycusis – age related hearing loss. Laryngorhinootologie. 2016. V. 95. N (7). P. 497–510. https://doi.org/10.1055/s-0042-106918
  56. Fluitt K.F., Mermagen T., Letowski T. Auditory perception in open field: Distance estimation. Army Research Lab Aberdeen Proving Ground MD Human Research and Engineering Directorate. 2013. https://doi.org/10.13140/RG.2.1.1182.7602
  57. Gatehouse S., Noble W. “Speech, Spatial, and Qualities of Hearing” questionnaire. Int. J. Audiol. 2004. V. 43 (2). P. 85–99. https://doi.org/10.1080/14992020400050014
  58. Ghazanfar A.A., Neuhoff J.G., Logothetis N.K. Auditory looming perception in rhesus monkeys. Proc Natl Acad Sci USA. 2002. V. 99. P. 15755–15757.
  59. Glyde H., Hickson L., Cameron S., Dillon H. Problems hearing in noise in older adults: a review of spatial processing disorder. Trends in amplification. 2011. V. 15 (3). P. 116–126. https://doi.org/10.1177/1084713811424885
  60. Graziano M.S., Reiss L.A., Gross C.G. A neuronal representation of the location of nearby sounds. Nature. 1999. V. 397. P. 428–430.
  61. Griffiths T.D., Warren J.D. The planum temporale as a computational hub. Trends in Neurosciences. 2002. V. 25. P. 348–353.
  62. Guipponi O., Wardak C., Ibarrola D., Comte J.C., Sappey-Marinier D., Pine`de S., Ben Hamed S. Multimodal convergence within the intraparietal sulcus of the macaque monkey. J Neurosci. 2013. V. 33. P. 4128–4139.
  63. Gvozdeva A.P., Andreeva I.G. The Minimum Audible Movement Distance for Localization of Approaching and Receding Broadband Noise with a Reduced Fraction of High-Frequency Spectral Components Typical of Prebyscusis. Journal of Evolutionary Biochemistry and Physiology. 2019. V. 55 (6). P. 463–474. https://doi.org/10.1134/S0022093019060048
  64. Gvozdeva A.P., Klishova E.A., Golovanova L.E., Andreeva I.G. The influence of previous myocardial infarctions on the temporal threshold for sound source motion localization in patients with sensorineural hearing loss. Journal of Evolutionary Biochemistry and Physiology. 2020. V. 56 (7). P. 763–773.
  65. Gvozdeva A.P., Klishova E.A., Sitdikov V.M., Golovanova L.E., Andreeva I.G.. Minimal time to determine direction of azimuthally moving sounds in moderately severe sensorineural hearing loss. Proc. Mtgs. Acoust. 2021. V. 43 (1). P. 050003.
  66. Hall D.A., Moore D.R. Auditory neuroscience: The salience of looming sounds. Current Biology. 2003. V. 13 (3). R91–R93. https://doi.org/10.1016/s0960-9822(03)00034-4
  67. Jones H.G., Koka K., Tollin D.J. The sound source distance dependence of the acoustical cues to location and their encoding by neurons in the inferior colliculus: implications for the duplex theory. In: Basic aspects of hearing (Moore BCJ, ed). New York: Springer. 2013. P. 273–282.
  68. Keating P., King A.J. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Frontiers in systems neuroscience. 2013. V. 7 (123). https://doi.org/10.3389/fnsys.2013.00123
  69. Kim D.O., Zahorik P., Carney L.H., Bishop B.B., Kuwada S. Auditory distance coding in rabbit midbrain neurons and human perception: monaural amplitude modulation depth as a cue. Journal of Neuroscience. 2015. V. 35 (13). P. 5360–5372.
  70. Klishova E.A., Gvozdeva A.P., Golovanova L.E., Andreeva I.G. Temporal characteristics of azimuthally moving sound source localization in patients with mild and moderate sensorineural hearing loss. J. Evol. Biochem. Phys. 2021. V. 57. P. 1499–1510. https://doi.org/10.1134/S0022093021060260
  71. Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten. Percept.Psychophys. 2016. V. 78 (2). P. 373–395. https://doi.org/10.3758/s13414-015-1015-1
  72. Kopčo N., Doreswamy K.K., Huang S., Rossi S., Ahveninen J. Cortical auditory distance representation based on direct-to-reverberant energy ratio. NeuroImage. 2020. V. 208. P. 116436.
  73. Kopčo N., Huang S., Belliveau J. W., Raij T., Tengshe C., Ahveninen J. Neuronal representations of distance in human auditory cortex. Proceedings of the National Academy of Sciences. 2012. V. 109 (27). P. 11019–11024.
  74. Koroleva I.V., Ogorodnikova E.A. Chapter 30: Modern achievements in cochlear and brainstem auditory implantation. In: Neural Networks and Neurotechnologies (edc: Yu. Shelepin, E. Ogorodnikova, N. Solovyev, E. Yakimova). SPb, Publish by VVM. 2019. P. 231–249.
  75. Kotelenko L.M., Fed’ko L.I., Shustin V.A. Comparative characteristics of spatial hearing of patients with different forms of cortical epilepsy. Human Physiology. 2000. V. 26. P. 148–153. https://doi.org/10.1007/BF02760085
  76. Kotelenko L.M., Fed’ko L.I., Shustin V.A. The subjective auditory space of epileptic patients with lesions in both the temporal cortical area and the hippocampus. Hum Physiol. 2007. V. 33. P. 539–545. https://doi.org/10.1134/S0362119707050040
  77. Kumpik D.P., King A.J. A review of the effects of unilateral hearing loss on spatial hearing. Hear Res. 2019. V. 372. P. 17–28. https://doi.org/10.1016/j.heares.2018.08.003
  78. Lohse M., Zimmer-Harwood P., Dahmen J.C., King A.J. Integration of somatosensory and motor-related information in the auditory system. Frontiers in Neuroscience. 2022. V. 16. P. 1010211. https://doi.org/10.3389/fnins.2022.1010211
  79. Ludwig A.A., Meuret S., Battmer R-D., Schönwiesner M., Fuchs M., Ernst A. Sound localization in single-sided deaf participants provided with a cochlear implant. Front. Psychol. 2021. V. 12. P. 753339. https://doi.org/10.3389/fpsyg.2021.753339
  80. Lundbeck M., Grimm G., Hohmann V., Laugesen S., Neher T. Sensitivity to angular and radial source movements as a function of acoustic complexity in normal and impaired hearing. Trends in hearing. 2017. V. 21. P. 2331216517717152. https://doi.org/10.1177/2331216517717152
  81. Makous J.C., Middlebrooks J.C. Two-dimensional sound localization by human listeners. The journal of the Acoustical Society of America. 1990. V. 87 (5). P. 2188–2200. https://doi.org/10.1121/1.399186
  82. Mathiak K., Hertrich I., Kincses W.E., Riecker A., Lutzenberger W., Ackermann H. The right supratemporal plane hears the distance of objects: neuromagnetic correlates of virtual reality. Neuroreport. 2003. V. 14. N (3). P. 307–311.
  83. Middlebrooks J.C. Sound localization. Handbook of clinical neurology. 2015. V. 129. P. 99–116. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  84. Moore B.C.J. An Introduction to the Psychology of Hearing. Leiden. Brill. 2012. 442 p.
  85. Moore B.C.J. Cochlear hearing loss: Physiological, psychological, and technical issues (2nd ed.). Wiley. 2007. 332 p.
  86. Moore D.R., King A.J. Auditory perception: the near and far of sound localization. Current Biology. 1999. V. 9(10). P. R361–R363. https://doi.org/10.1016/S0960-9822(99)80227-9
  87. Moulin A., Richard C. Sources of variability of Speech, Spatial, and Qualities of Hearing Scale (SSQ) scores in normal-hearing and hearing-impaired populations. Int J Audiol. 2016. V. 55 (2). P. 101–109. http://doi.org/10.3109/14992027.2015.1104734
  88. Musa-Shufani S., Walger M., von Wedel H., Meister H. Influence of dynamic compression on directional hearing in the horizontal plane. Ear and hearing. 2006. V. 27 (3). P. 279–285. https://doi.org/10.1097/01.aud.0000215972.68797.5e
  89. Musiek F.E., Chermak G.D. Handbook of central auditory processing disorder. San Diego. Plural Publishing. 2014. V. 1. Auditory neuroscience and diagnosis. 768 p.
  90. Muthu A.N.P., Fathima H., Kanagokar V., Bhat J.S., Kumar S. A system for spatial hearing research. MethodsX. 2022. V. 9. P. 101727. https://doi.org/10.1016/j.mex.2022.101727
  91. Nisha K.V., Uppunda A.K., Kumar R.T. Spatial rehabilitation using virtual auditory space training paradigm in individuals with sensorineural hearing impairment. Front. Neurosci. 2023. V. 16. P. 1080398. https://doi.org/10.3389/fnins.2022.1080398
  92. Noble W., Byrne D., Lepage B. Effects on sound localization of configuration and type of hearing impairment. The Journal of the Acoustical Society of America. 1994. V. 9 (2). P. 992–1005. https://doi.org/10.1121/1.408404
  93. Nopp P., Schleich P., D’haese P. Sound localization in bilateral users of MED-EL COMBI 40/40+ cochlear implants. Ear and hearing. 2004. V. 25 (3). P. 205–214. https://doi.org/10.1097/01.AUD.0000130793.20444.50
  94. Otte R.J., Agterberg M.J.H., Wanrooij M.M.V., Snik A.F.M., Van Opstal A.J. Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance. J. Assoc. Res. Otolaryngol. 2013. V. 14 (2). P. 261–273. https://doi.org/10.1007/s10162-012-0367-7
  95. Paul S. Binaural recording technology: A historical review and possible future developments. Acta Acustica united with Acustica. 2009. V. 95. P. 767–788. https://doi.org/10.3813/AAA.918208
  96. Pavani F., Macaluso E., Warren J.D., Driver J., Griffiths T.D. A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Curr. Biol. 2002. V. 12 (18). P. 1584–1590.
  97. Perrott D.R., Costantino B., Cisneros J. Auditory and visual localization performance in a sequential discrimination task. The Journal of the Acoustical Society of America. 1993. V. 93 (4). P. 2134–2138. https://doi.org/10.1121/1.406675
  98. Perrott D.R., Musicant A.D. Minimum auditory movement angle: binaural localization of moving sound sources. Acoust. Soc. Am. 1977. V. 62 (6). P. 1463–1466. https://doi.org/10.1121/1.381675
  99. Peters B.R., Wyss J., Manrique M. Worldwide trends in bilateral cochlear implantation. Laryngoscope. 2010. V. 120 (2). P. 17–44. https://doi.org/10.1002/lary.20859
  100. Pienkowski M., Tyler R.S., Roncancio E.R., Hyung Jin Jun, Brozoski T., Dauman N., Coelho C.B., Andersson G., Keiner A.J., Cacace A.T., Martin N., Moore B.C.J. A Review of Hyperacusis and Future Directions: Part II. Measurement, Mechanisms, and Treatment. Am. J. Audiol. 2014. V. 23 (4). P. 420. https://doi.org/10.1044/2014_AJA-13-0037
  101. Rauschecker J.P. Auditory and visual cortex of primates: A comparison of two sensory systems. Eur. J. Neurosci. 2015. V. 41. P. 579–585.
  102. Reiss D., Zanetti M., Neukum G. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus. 2011. V. 215 (1). P. 358–369. https://doi.org/10.1016/j.icarus.2011.06.011
  103. Ricketts T.A., Grantham D.W., Ashmead D.H., Haynes D.S., Labadie R.F. Speech recognition for unilateral and bilateral cochlear implant modes in the presence of uncorrelated noise sources. Ear and hearing. 2006. V. 27 (6). P. 763–773. https://doi.org/10.1097/01.aud.0000240814.27151.b9
  104. Russell M.K. Age and Auditory spatial perception in humans: review of behavioral findings and suggestions for future research. Front. Psychol. 2022. V. 13. P. 831670. https://doi.org/10.3389/fpsyg.2022.831670
  105. Schoen F., Mueller J., Helms J., Nopp P. Sound localization and sensitivity to interaural cues in bilateral users of the Med-El Combi 40/40+ cochlear implant system. Otology & Neurotology. 2005. V. 26 (3). P. 429–437. https://doi.org/10.1097/01.mao.0000169772.16045.86
  106. Seifritz E., Neuhoff J.G., Bilecen D., Scheffler K., Mustovic H. Neural processing of auditory looming in the human brain. Current Biology. 2002. V. 12. P. 2147–2151. https://doi.org/10.1016/S0960-9822(02)01356-8
  107. Sharma R.K., Lalwani A.K., Golub J.S. Prevalence and severity of hearing loss in the older old population. JAMA Otolaryngol Head Neck Surg. 2020. V. 146 (8). P. 762–763. https://doi.org/10.1001/jamaoto.2020.0900
  108. Simon H.J., Levitt H. Effect of dual sensory loss on auditory localization: implications for intervention. Trends in Amplification. 2007. V. 11 (4). P. 259–272. https://doi.org/10.1177/1084713807308209
  109. Tyler R.S., Perreau A.E., Ji H. The validation of the spatial hearing questionnaire. Ear and hearing. 2009. 30 (4): 466–474. https://doi.org/10.1097/AUD.0b013e3181a61efe
  110. Tyler R.S., Pienkowski M., Roncancio E.R., Hyung Jin Jun, Brozoski T., Dauman N., Coelho C.B., Andersson G., Keiner A.J., Cacace A.T., Martin N., Moore B.C.J. A review of hyperacusis and future directions: Part I. Definitions and manifestations. Am. J. Audiol. 2014. V. 23 (4). P. 402. https://doi.org/10.1044/2014_AJA-14-0010
  111. Vartanyan I.A., Tarkhan A.U., Chernigovskaya T.V. Participation of the left and right hemispheres of the human brain in the formation of a subjective acoustic field. Fiziol. Chel. 1999. V. 25 (1). P. 43.
  112. Zahorik P., Brungart D.S., Bronkhorst A.W. Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica. 2005. V. 91 (3). P. 409–420.
  113. Zheng Y., Koehnke J., Besing J. Combined effects of noise and reverberation on sound localization for listeners with normal hearing and bilateral cochlear implants. American Journal of Audiology. 2017. V. 26 (4). P. 519–530. https://doi.org/10.1044/2017_AJA-16-0101
  114. Zheng Y., Swanson J., Koehnke J., Guan J. Sound localization of listeners with normal hearing, impaired hearing, hearing aids, bone-anchored hearing instruments, and cochlear implants: a review. American Journal of Audio-logy (AJA). 2022. V. 31 (3). P. 819–834. https://doi.org/10.1044/2022_AJA-22-00006

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies