Тhe role of auditory feedback in voice control with normal and impaired hearing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Control of speech fulfilled by cooperation between feedforward control and feedback control. Feedforward control activates program of articulation, whereas feedback control carries acoustic and sensorimotor information about pronounced utterance. Their complementary speech control function described by the DIVA model, which based on adjustment of auditory and proprioceptive signals relatively to program of articulation in nerve centers. The inconsistency between the sensory information received via feedback and the presentation of the acoustic signal in the auditory nucleus causes corrective commands. Auditory feedback is necessary for the correct development of children’s articulatory skills, i.e. forming feedforward control. For this reason, prelingually deafened adults have significant articulation impairments due to immature articulatory skills. In postlingual deafness, the previously forming feedforward control allows pronounce phonemes successfully. However, in people with sensorineural hearing loss, control of phonation and articulation through the auditory feedback deteriorates, which expressed by an increase of voice intensity, changes in the speech spectral characteristics and instability in frequency and amplitude. Similar speech changes are found in speakers with normal hearing in the presence of noise that masks the speaker’s voice (Lombard effect). In noise, voice intensity increase, spectral characteristics of speech shift to the high-frequency region, and increase the amplitude and speed of articulatory movements (hyperarticulation). This speech reorganization is an adaptation of the speaker’s own voice to background noise, which purpose is to unmask the speech and restore auditory feedback control.

About the authors

A. M. Lunichkin

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Author for correspondence.
Email: BolverkDC@mail.ru
Russia, 194223, Saint-Petersburg, рr. Torez, 44

K. S. Shtin

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: BolverkDC@mail.ru
Russia, 194223, Saint-Petersburg, рr. Torez, 44

References

  1. Andreeva I.G., Kulicov G.A. Charakteristika pevcheskich glasnuch pri raznoi chastote osnovnogo tona [Sung vowels’ characteristics under different fundamental frequency]. Sensornye sistemy [Sensory systems]. 2004. V. 18 (2). P. 172–179 (in Russian).
  2. Lunichkin A.M., Andreeva I.G., Zaitseva L.G., Gvozdeva A.P., Ogorodnikova E.A. Izmenenie spektralinuch charakteristik glasnuch zvukov v russkoi rechi na fone schuma [Changes in the spectral characteristics of vowels in Russian speech on a noise background]. Acusticheskii zurnal [Acoustical Journal]. 2023. V. 69 (3). P. 357–366 (in Russian). https://doi.org/10.1134/S1063771023600237
  3. Shtin K.S., Lunichkin A.M., Gvozdeva A.P., L. Golovanova L.E., Andreeva I.G. Spektralinue charakteristiki kardinalinuch glaznuch zvukov kak pokazateli sluchorechevoi obratnoi svyzi u pacientov s postlingvalinoi chroniceskoi sensonevralinoi tugouchostiy 2 i 3 stepeni [Spectral characteristics of cardinal vowels as indicators of the auditory speech feedback control in patients with moderate and moderately severe chronic postlingual sensorineural hearing loss]. Rossiiskii fiziologicheskii zurnal [Journal of Evolutionary Biochemistry and Physiology]. 2023. V. 59 (4). P. 596–606. https://doi.org/10.31857/S0869813923040106 (in Russian)
  4. Alghamdi N., Maddock S., Marxer R., Barker J., Brown G. A corpus of audio-visual Lombard speech with frontal and profile views. The Journal of the Acoustical Society of America. 2018. V. 143 (6). P. 523–529. https://doi.org/10.1121/1.5042758
  5. Amazi D.K., Garber S.R. The Lombard sign as a function of age and task. Journal of Speech, Language, and Hearing Research. 1982. V. 25 (4). P. 581–585. https://doi.org/10.1044/jshr.2504.581
  6. Anand S., Gutierrez D., Bottalico P. Acoustic-perceptual correlates of voice among steam train engineers: effects of noise and hearing protection. Journal of voice: official journal of the Voice Foundation. 2023. V. 37 (3). P. 366–373. https://doi.org/10.1016/j.jvoice.2021.01.006
  7. Bond Z., Moore T., Gable B. Acoustic–phonetic characteristics of speech produced in noise and while wearing an oxygen mask. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 907–912. https://doi.org/10.1121/1.397563
  8. Bottalico P. Lombard effect, ambient noise, and willingness to spend time and money in a restaurant. The Journal of the Acoustical Society of America. 2018. V. 144 (3). P. 209–214. https://doi.org/10.1121/1.5055018
  9. Bottalico P., Graetzer S., Hunter E. J. Effect of training and level of external auditory feedback on the singing voice: volume and quality. Journal of Voice. 2016. V. 30 (4). P. 434–442. https://doi.org/10.1016/j.jvoice.2015.05.010
  10. Bottalico P., Passione I., Graetzer S., Hunter E. Evaluation of the starting point of the Lombard effect. Acta acustica united with acustica. 2017. V. 103 (1). P. 169–172. https://doi.org/10.3813/AAA.919043
  11. Bottalico P., Piper R., Legner B. Lombard effect, intelligibility, ambient noise, and willingness to spend time and money in a restaurant amongst older adults. Scientific Reports. 2022. V. 12 (1). P. 1–9. https://doi.org/10.1038/s41598-022-10414-6
  12. Bouchard K., Chang E. Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex. Journal of Neuroscience. 2014. V. 34 (38). P. 12662–12672. https://doi.org/10.1523/JNEUROSCI.1219-14.2014
  13. Bradlow A., Torretta G., Pisoni D. Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics. Speech Communication. 1996. V. 20. P. 255–272. https://doi.org/10.1016/S0167-6393(96)00063-5
  14. Campisi P., Low A., Papsin B., Mount R., Harrison R. Multidimensional voice program analysis in profoundly deaf children: quantifying frequency and amplitude control. Perceptual and Motor Skills. 2006. V. 103 (1). P. 40–50. https://doi.org/10.2466/pms.103.1.40-50.
  15. Coelho A., Brasolotto A., Bahmad F. Development and validation of the protocol for the evaluation of voice in subjects with hearing impairment. Brazilian Journal of Otorhinolaryngology. 2019. V. 86 (6). P. 748–762. https://doi.org/10.1016/j.bjorl.2019.05.007
  16. Coelho A., Medved D., Brasolotto A. Hearing loss and Voice. In: Update on Hearing Loss. InTech. 2015. https://doi.org/10.5772/61217
  17. Cooke M., Lu Y. Spectral and temporal changes to speech produced in the presence of energetic and informational maskers. The Journal of the Acoustical Society of America. 2010. V. 128 (4). P. 2059–2069. https://doi.org/10.1121/1.3478775
  18. Das B., Chatterjee I., Kumar S. Laryngeal aerodynamics in children with hearing impairment versus age and height matched normal hearing peers. ISRN Otolaryngology. 2013. https://doi.org/10.1155/2013/394604
  19. Garnier M., Bailly L., Dohen M., Welby P., Lœvenbruck H. An acoustic and articulatory study of Lombard speech: global effects on the utterance. URL: https://hal.science/hal-00370947.html
  20. Garnier M., Dohen M., Loevenbruck H., Welby P., Bailly L. The Lombard Effect: a physiological reflex or a controlled intelligibility enhancement? URL: https://hal.science/hal-00214307.html
  21. Garnier M., Henrich N. Speaking in noise: How does the Lombard effect improve acoustic contrasts between speech and ambient noise? Computer Speech & Language. 2014. V. 28 (2). P. 580–597. https://doi.org/10.1016/j.csl.2013.07.005
  22. Garnier M., Henrich N., Dubois D. Influence of sound immersion and communicative interaction on the Lombard effect. Journal of Speech, Language, and Hearing Research. 2010. V. 53 (3). P. 588–608. https://doi.org/10.1044/1092-4388(2009/08-0138)
  23. Garnier M., Ménard L., Alexandre B. Hyper-articulation in Lombard speech: An active communicative strategy to enhance visible speech cues? The Journal of the Acoustical Society of America. 2018. V. 144 (2). P. 1059–1074. https://doi.org/10.1121/1.5051321
  24. Gautam A., Naples J., Eliades S. Control of speech and voice in cochlear implant patients. The Laryngoscope. 2019. V. 129 (9). P. 2158–2163. https://doi.org/10.1002/lary.27787
  25. Gervain J., Mehler J. Speech perception and language acquisition in the first year of life. Annual Review of Psychology. 2010. V. 61. P. 191–218. https://doi.org/10.1146/annurev.psych.093008.100408
  26. Graven S., Brown J. Auditory development in the fetus and infant. Newborn and Infant Nursing Reviews; NAINR. 2008. V. 8 (4). P. 187–193. https://doi.org/10.1053/j.nainr.2008.10.010
  27. Guenter F. Neural control of speech. London, England, The MIT Press. 2016. 420 p.
  28. Guenther F. Speech sound acquisition, coarticulation and rate effects in a neural network model of speech production. Psychological Review. 1995. V. 102 (3). P. 594–621. https://doi.org/10.1037/0033-295x.102.3.594
  29. Guenther F., Ghosh S., Tourville J. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain & Language. 2006. V. 96 (3). P. 280–301. https://doi.org/10.1016/j.bandl.2005.06.001
  30. Guenther F., Vladusich T. A neural theory of speech acquisition and production. Journal of Neurolinguistics. 2012. V. 25 (5). P. 408–422. https://doi.org/0.1016/j.jneuroling.2009.08.006
  31. Hadley L., Brimijoin W., Whitmer W. Speech, movement, and gaze behaviours during dyadic conversation in noise. Scientific reports. 2019. V. 9 (1). P. 1–8. https://doi.org/10.1038/s41598-019-46416-0
  32. Hage S., Jürgens U., Ehret G. Audio–vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience. 2006. V. 23 (12). P. 3297–3308. https://doi.org/10.1111/j.1460-9568.2006.04835.x
  33. Hage S., Nieder A. Dual neural network model for the evolution of speech and language. Trends in neurosciences. 2016. V. 39 (12). P. 813–829. https://doi.org/10.1016/j.tins.2016.10.006
  34. Halfwerk W., Lea A., Guerra M., Page R., Ryan M. Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology and Sociobiology. 2006. V. 27. P. 669–676. https://doi.org/10.1093/beheco/arv204
  35. Hazan V., Baker R. Acoustic-phonetic characteristics of speech produced with communicative intent to counter adverse listening conditions. The Journal of the Acoustical Society of America. 2011. V. 130 (4). P. 2139–2152. https://doi.org/10.1121/1.3623753
  36. Hazan V., Markham D. Acoustic-phonetic correlates of talker intelligibility for adults and children. The Journal of the Acoustical Society of America. 2004. V. 116 (5). P. 3108–3118. https://doi.org/10.1121/1.1806826
  37. Higgins M., Carney A., Schulte L. Physiological assessment of speech and voice production of adults with hearing loss. Journal of Speech and Hearing Research. 1994. V. 37 (3). P. 510–521. https://doi.org/10.1044/jshr.3703.510
  38. Hocevar-Boltezar I., Vatovec J., Gros A., Zagri M. The influence of cochlear implantation on some voice parameters. International Journal of Pediatric Otorhinolaryngology. 2005. V. 69 (12). P. 1635–1640. https://doi.org/10.1016/j.ijporl.2005.03.045
  39. Holt D., Johnston C. Evidence of the Lombard effect in fishes. Behavioral Ecology and Sociobiology. 2014. V. 25. P. 819–826. https://doi.org/10.1093/beheco/aru028
  40. Hotchkin C., Parks S. The Lombard effect and other noise-induced vocal modifications: insight from mammalian communication systems. Biological Reviews. 2013. V. 88 (4). P. 809–824. https://doi.org/10.1111/brv.12026
  41. Huber J., Chandrasekaran B. Effects of increasing sound pressure level on lip and jaw movement parameters and consistency in young adults. Journal of Speech, Language, and Hearing Research. 2006. V. 49 (6). P. 1368. https://doi.org/10.1044/1092-4388(2006/098)
  42. Ito T., Ostry D. Somatosensory contribution to motor learning due to facial skin deformation. Journal of Neurophysiology. 2010. V. 104 (3). P. 1230–1238. https://doi.org/10.1152/jn.00199.2010
  43. Jokinen E., Remes U., Alku P. The use of read versus conversational Lombard speech in spectral tilt modeling for intelligibility enhancement in near-end noise conditions. Interspeech. 2016. P. 2771–2775. https://doi.org/10.21437/Interspeech.2016-143
  44. Junqua J. The Lombard reflex and its role on human listeners and automatic speech recognizers. The Journal of the Acoustical Society of America. 1993. V. 93. P. 510–524. https://doi.org/10.1121/1.405631
  45. Junqua J., Fincke S., Field K. The Lombard effect: A reflex to better communicate with others in noise. IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. 1999. V. 4. P. 2083–2086. https://doi.org/10.1109/ICASSP.1999.758343
  46. Keough D., Hawco C., Jones J. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience. 2013. V. 9. P. 14–25. https://doi.org/10.1186/1471-2202-14-25
  47. Kim J., Davis C., Vignali G., Hill H. A visual concomitant of the Lombard reflex. AVSP. 2005. P. 17–22.
  48. Kleczkowski P., Żak A., Król-Nowak A. Lombard effect in Polish speech and its comparison in English speech. Archives of Acoustics. 2017. V. 42 (4). P. 561–569. https://doi.org/10.1515/aoa-2017-0060
  49. Lam J., Tjaden K. Intelligibility of clear speech: Effect of instruction. Journal of Speech, Language, and Hearing Research. 2013. V. 56 (5). P. 1429–1440. https://doi.org/10.1044/1092-4388(2013/12-0335)
  50. Lane H., Tranel B. The Lombard sign and the role of hearing in speech. Journal of Speech and Hearing Research. 1971. V. 14 (4). P. 677–709. https://doi.org/10.1044/jshr.1404.677
  51. Larson C., Altman K., Liu H., Hain T. Interactions between auditory and somatosensory feedback for voice F0 control. Experimental Brain Research. 2008. V. 187 (4). P. 613–621. https://doi.org/10.1007/s00221-008-1330-z
  52. Lau P. The Lombard Effect as a communicative phenomenon. UC Berkeley PhonLab Annual Report. 2008. V. 4 (4). https://doi.org/10.5070/P719j8j0b6
  53. Lee G. Variability in voice fundamental frequency of sustained vowels in speakers with sensorineural hearing loss. Journal of Voice. 2012. V. 26 (1). P. 24–29. https://doi.org/10.1016/j.jvoice.2010.10.003
  54. Lee S., Potamianos A., Narayanan S. Acoustics of children’s speech: Developmental changes of temporal and spectral parameters. The Journal of the Acoustical Society of America. 1999. V. 105 (3). P. 1455–1468. https://doi.org/10.1121/1.426686
  55. Lee S., Yu J., Fang T., Lee G. Vocal fold nodules: a disorder of phonation organs or auditory feedback? Clinical Otolaryngology. 2019. V. 44 (6). P. 975–982. https://doi.org/10.1111/coa.13417
  56. Letowski T., Frank T., Caravella J. Acoustical properties of speech produced in noise presented through supra-aural earphones. Ear and Hearing. 1993. V. 14 (5). P. 332–338. https://doi.org/10.1097/00003446-199310000-00004
  57. Liberman A., Mattingly I. The motor theory of speech perception revised. Cognition. 1985. V. 21. P. 1–36. https://doi.org/10.1016/0010-0277(85)90021-6
  58. Lu Y., Cooke M. Speech production modifications produced by competing talkers, babble, and stationary noise. The Journal of the Acoustical Society of America. 2008. V. 124. P. 3261–3275. https://doi.org/10.1121/1.2990705
  59. Lu Y., Cooke M. Speech production modifications produced in the presence of low-pass and high-pass filtered noise. The Journal of the Acoustical Society of America. 2009. V. 126. P. 1495–1499. https://doi.org/10.1121/1.2990705
  60. Lu Y., Cooke M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Communication. 2009. V. 51. P. 1253–1262. https://doi.org/10.1016/j.specom.2009.07.002
  61. Luo J., Hage S.R., Moss C.F. The Lombard effect: from acoustics to neural mechanisms. Trends in neurosciences. 2018. V. 41 (12). P. 938–949. https://doi.org/10.1016/j.tins.2018.07.011
  62. Marcoux K., Ernestus M. Pitch in native and non-native Lombard speech. 19th International Congress of Phonetic Sciences (ICPhS 2019). Australasian Speech Science and Technology Association Inc. 2019. P. 2605–2609.
  63. Matsumoto S., Akagi M. Variation of Formant Amplitude and Frequencies in Vowel Spectrum uttered under Various Noisy Environments. URL: http://hdl.handle.net/10119/15772.html
  64. Meekings S., Evans S., Lavan N. Distinct neural systems recruited when speech production is modulated by different masking sounds. The Journal of the Acoustical Society of America. 2016. V. 140 (1). P. 8–19. https://doi.org/10.1121/1.4948587
  65. Meekings S., Scott S.K. Error in the superior temporal gyrus? A systematic review and activation likelihood estimation meta-analysis of speech production studies. Journal of. Cognitive Neuroscience. 2021. V. 33 (3). P. 422–444. https://doi.org/10.1162/jocn_a_01661
  66. Mermelstein P. Articulatory model for the study of speech production. The Journal of the Acoustical Society of America. 1973. V. 53 (4). P. 1070–1082. https://doi.org/10.1121/1.1913427
  67. Nonaka S., Takahashi R., Enomoto K. Lombard reflex during PAG-induced vocalization in decerebrate cats. Journal of Neuroscience Research. 1997. V. 29 (4). P. 283–289. https://doi.org/10.1016/S0168-0102(97)00097-7
  68. Patel R., Schell K.W. The Influence of Linguistic Content on the Lombard Effect. Journal of Speech, Language, and Hearing Research. 2008. V. 51. P. 209–220. https://doi.org/10.1044/1092-4388(2008/016)
  69. Perkell J. Five decades of research in speech motor control: what have we learned, and where should we go from here? Journal of Speech, Language, and Hearing Research. 2013. V. 56 (6). P. 1857–1874. https://doi.org/10.1044/1092-4388(2013/12-0382)
  70. Perkell J. Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics. 2012. V. 25. P. 382–407. https://doi.org/10.1016/j.jneuroling.2010.02.011
  71. Perrier P., Ostry D., Laboissière R. The equilibrium point hypothesis and its application to speech motor control. Journal of Speech and Hearing Research. 1996. V. 39 (2). P. 365–378. https://doi.org/10.1044/jshr.3902.365
  72. Pick H., Siegel G., Fox P., Garber S., Kearney J. Inhibiting the Lombard effect. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 894–900. https://doi.org/10.1121/1.397561
  73. Pittman A., Wiley T. Recognition of speech produced in noise. Journal of Speech, Language, and Hearing Research. 2001. V. 44 (3). P. 487–496. https://doi.org/10.1044/1092-4388(2001/038)
  74. Schenk B., Baumgartner W., Hamzavi J. Effect of the loss of auditory feedback on segmental parameters of vowels of postlingually deafened speakers. Auris Nasus Larynx. 2003. V. 30 (4). P. 333–339. https://doi.org/10.1016/s0385-8146(03)00093-2
  75. Schwartz J., Boë J., Vallée N., Abry C. The dispersion-focalization theory of vowel systems. Journal of Phonetics. 1997. V. 25. P. 255–286.
  76. Selleck M., Sataloff R. The impact of the auditory system on phonation: a review. Journal of Voice. 2014. V. 28 (6). P. 688–693. https://doi.org/10.1016/j.jvoice.2014.03.018
  77. Shen C., Cooke M., Janse E. Speaking in the presence of noise: Consistency of acoustic properties in clear-Lombard speech over time. The Journal of the Acoustical Society of America. 2023. V. 153 (4). P. 2165–2165. https://doi.org/10.1121/10.0017769
  78. Siegel G., Pick H., Olsen M., Sawin L. Auditory feedback on the regulation of vocal intensity of preschool children. Developmental Psychology. 1976. V. 12 (3). P. 255. https://doi.org/10.1037/0012-1649.12.3.255
  79. Šimko J., Beňuš Š., Vainio M. Hyperarticulation in Lombard speech: Global coordination of the jaw, lips and the tongue. The Journal of the Acoustical Society of America. 2016. V. 139 (1). P. 151–162. https://doi.org/10.1121/1.4939495
  80. Smith B., Kenney M., Hussain S. A longitudinal investigation of duration and temporal variability in children’s speech production. The Journal of the Acoustical Society of America. 1996. V. 99 (4). P. 2344–2349. https://doi.org/10.1121/1.415421
  81. Smith B., Sugarman M., Long S. Experimental manipulation of speaking rate for studying temporal variability in children’s speech. The Journal of the Acoustical Society of America. 1983. V. 74 (3). P. 744–749. https://doi.org/10.1121/1.389860
  82. Stathopoulos E., Duchan J., Sonnenmeier R., Bruce N. Intonation and pausing in deaf speech. Folia Phoniat. 1986. V. 38 (1). P. 1–12. https://doi.org/10.1159/000265814
  83. Stowe L., Golob E. Evidence that the Lombard effect is frequency-specific in humans. The Journal of the Acoustical Society of America. 2013. V. 134 (1). P. 640–647. https://doi.org/10.1121/1.4807645
  84. Summers W., Pisoni D., Bernacki R., Pedlow R., Stokes M. Effects of noise on speech production: Acoustic and perceptual analyses. The Journal of the Acoustical Society of America. 1988. V. 84 (3). P. 917–928. https://doi.org/10.1121/1.396660
  85. Svirsky M., Lane H., Perkell J., Wozniak J. Effects of short-term auditory deprivation on speech production in adult cochlear implant users. Journal of the Acoustical Society of America. 1992. V. 92 (3). P. 1284–1300. https://doi.org/10.1121/1.403923
  86. Szkiełkowska A., Myszel K. Acoustic voice parameters in hearing-impaired, school-aged children. Research study outcomes. Journal of Clinical Otorhinolaryngology. 2021. V. 3 (3). https://doi.org/10.31579/2692-9562/034
  87. Tang P., Xu Rattanasone N., Yuen I., Demuth K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech. The Journal of the Acoustical Society of America. 2017. V. 142 (2). P. 493–503. https://doi.org/10.1121/1.4995998
  88. Therrien A., Lyons J., Balasubramaniam R. Sensory attenuation of self-produced feedback: the Lombard effect revisited. PLoS One. 2012. V. 7 (11). 11. P. 1–7. https://doi.org/10.1371/journal.pone.0049370
  89. Tonkinson S. The Lombard effect in choral singing. Journal of Voice. 1994. V. 8 (1). P. 24–29. https://doi.org/10.1016/S0892-1997(05)80316-9
  90. Tourville J., Guenther F. The DIVA model: a neural theory of speech acquisition and production. Language and cognitive processes. 2011. V. 26 (7). P. 952–981. https://doi.org/10.1080/01690960903498424
  91. Tourville J., Reilly K., Guenther F. Neural mechanisms underlying auditory feedback control of speech. NeuroImage. 2007. V. 39 (3). P. 1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054
  92. Ubrig M., Tsuji R., Weber R., Menezes M., Barrichelo V., Cunha M., Tsuji D., Goffi-Gomez M. The influence of auditory feedback and vocal rehabilitation on prelingual hearing-impaired individuals post cochlear implant. Journal of Voice. 2018. V. 33 (6). P. 1–9. https://doi.org/10.1016/j.jvoice.2018.07.004
  93. Vainio M., Aalto D., Suni A., Arnhold A., Raitio T., Seijo H., Järvikivi J., Alku P. Effect of noise type and level on focus related fundamental frequency changes. URL: http://interspeech2012.org/accepted-abstract.html?id=952.html
  94. Van Ngo T., Kubo R., Morikawa D., Akagi M. Acoustical analyses of tendencies of intelligibility in Lombard speech with different background noise levels. Journal of Signal Processing. 2017. V. 21 (4). P. 171–174. https://doi.org/doi.org/10.2299/jsp.21.171
  95. Vance M., Stackhouse J., Wells B. Speech-production skills in children aged 3–7 years. International Journal of Language & Communication Disorders. 2005. V. 40 (1). P. 29–48. https://doi.org/10.1080/13682820410001716172
  96. Villacorta V., Perkell J., Guenther F. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception. Journal of the Acoustical Society of America. 2007. V. 122. P. 2306–2319. https://doi.org/10.1121/1.2773966
  97. Voelker C. A preliminary strobophotoscopic study of the speech of the deaf. American Annals of the Deaf. 1935. V. 80. P. 243–259.
  98. Wyke B. Laryngeal myotatic reflexes and phonation. Folia Phoniatr. 1974. V. 26 (4). P. 249–264. https://doi.org/10.1159/000263784
  99. Zamani P., Bayat A., Saki N., Ataee E., Bagheripour H. Post-lingual deaf adult cochlear implant users’ speech and voice characteristics: cochlear implant turned-on versus turned-off. Acta Oto-Laryngologica. 2021. V. 141 (4). P. 367–373. https://doi.org/10.1080/00016489.2020.1866778
  100. Zhao Y., Jurafsky D. The effect of lexical frequency and Lombard reflex on tone hyperarticulation. Journal of Phonetics. 2009. V. 37 (2). P. 231–247. https://doi.org/10.1016/j.wocn.2009.03.002
  101. Zollinger S.A., Brumm H. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour. 2011. V. 148 (11–13). P. 1173–1198. https://doi.org/10.1163/000579511X605759

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies