Behavioural responses of cockroaches Periplaneta americana L. to short and long wavelength light in a wind tunnel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavioural responses of the American cockroach Periplaneta americana to short-wavelength and long-wavelength light were studied in a wind tunnel. Initial directional movement towards the light source was observed in response to both stimuli, but the latency in response to green light was significantly shorter. The cockroaches moving towards the UV light often returned to the less illuminated starting point, while this behaviour was not typical under green light. UV light often initiated masking, the behavior characteristic of the inactive, diurnal phase of the 24-hour cycle.

About the authors

M. I. Zhukovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: mzhukovskaya@yahoo.com
Russia, 104223, St. Petersburg, Thorez Ave, 44

A. V. Shchenikova

All-Russian Institute of Plant Protection, Russian Academy of Sciences St.

Email: mzhukovskaya@yahoo.com
Russia, 196608, St. Petersburg – Pushkin, Podbelskogo road, 3

O. G. Selitskaya

All-Russian Institute of Plant Protection, Russian Academy of Sciences St.

Email: mzhukovskaya@yahoo.com
Russia, 196608, St. Petersburg – Pushkin, Podbelskogo road, 3

A. A. Miltsyn

All-Russian Institute of Plant Protection, Russian Academy of Sciences St.

Email: mzhukovskaya@yahoo.com
Russia, 196608, St. Petersburg – Pushkin, Podbelskogo road, 3

E. S. Novikova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: mzhukovskaya@yahoo.com
Russia, 104223, St. Petersburg, Thorez Ave, 44

A. N. Frolov

All-Russian Institute of Plant Protection, Russian Academy of Sciences St.

Email: mzhukovskaya@yahoo.com
Russia, 196608, St. Petersburg – Pushkin, Podbelskogo road, 3

References

  1. Abbas M., Ramzan M., Hussain N., Ghaffar A., Hussain K., Abbas S., Raza A. Role of light traps in attracting, killing and biodiversity studies of insect pests in Thal. Pakistan Journal of Agricultural Research. 2019. V. 32 (4). P. 684–690. https://doi.org/10.17582/journal.pjar/2019/32.4.684.690
  2. Avarguès-Weber A., Mota T., Giurfa M. New vistas on honey bee vision. Apidologie. 2012. V. 43. P. 244–268. https://doi.org/10.1007/s13592-012-0124-2
  3. Baker T.C., Linn C.E. Wind tunnels in pheromone research. In: H.E. Hummel, T.A. Miller (eds.). Techniques in Pheromone Research. New York, Springer. 1984. P. 75–110. https://doi.org/10.1007/978-1-4612-5220-7_3
  4. Briscoe A.D., Chittka L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001. V. 46. P. 471–510. https://doi.org/10.1146/annurev.ento.46.1.471
  5. Buschbeck E.K., Friedrich M. Evolution of insect eyes: tales of ancient heritage, deconstruction, reconstruction, remodeling, and recycling. Evolution: Education and Outreach. 2008. V. 1. P. 448–462. https://doi.org/10.1007/s12052-008-0086-z
  6. Collett M., Chittka L., and Collett T.S. Spatial memory in insect navigation. Curr. Biol. 2013. V. 23 (17), pp. R789–R800. https://doi.org/10.1016/j.cub.2013.07.020
  7. Deng J.Y., Wei H.Y., Huang Y.P., Du J.W. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 2004. V. 30 (10). P. 2037–2045. https://doi.org/10.1023/B:JOEC.0000045593.62422.73
  8. Dremova V.P., Alesho N.A. Tarakany. Biologija, jekologija, sanitarno-jepidemiologicheskoe znachenie, kontrol'’chislennosti sinantropnyh tarakanov [Cockroaches. Biology, ecology, sanitary and epidemiological significance, control of the number of synanthropic cockroaches]. Moscow. KMK Scientific Press Ltd., 2011. 305 p. (in Russian).
  9. Evangelista D.A., Russell G., Russell K.N., Bourne G., Ware J.L. Evidence that dispersal barriers influence blaberoid cockroach assemblages in a neotropical savanna–forest matrix. Insect. Conserv. Divers. 2017. V. 10 (5). P. 425–438. https://doi.org/10.1111/icad.12246
  10. Frolov A., Shchenikova A., Selitskaya O., Grushevaya I., Zhukovskaya M., Fedoseev N., Kuzmin A., Lastushkina E., Kurenshchikov D., Kurenshchikov V., Tóth M. Asian corn borer (Ostrinia furnacalis Gn., Lepidoptera: Crambidae): attraction to a bisexual lure and comparison of performance with synthetic sex pheromone. Acta Phytopathol. Entomol. Hung. 2022. V. 57 (2). P. 148–164. https://doi.org/10.1556/038.2022.00159
  11. Goldsmith T.H., Ruck P.R. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees: an electrophysiological study. J. Gen. Physiol. 1958. V. 41 (6). P. 1171. https://doi.org/10.1085/jgp.41.6.1171
  12. Gornostaev G.N. Vvedenie v etologiju nasekomyh-fotoksenov(let nasekomyh na iskusstvennye istochniki sveta). Introduction to Ethology of Photoxenic Insects (Flight of Insects towards Artificial Sources of Light), in Etologiya nasekomykh (Ethology of Insects), Leningrad: Nauka, 1984, vol. 66, pp. 101–167.
  13. Greiner B. Adaptations for nocturnal vision in insect apposition eyes. International Review of Cytology. 2006. V. 250. P. 1–46. https://doi.org/10.1016/S0074-7696(06)50001-4
  14. Gribakin F.G. Mehanizmy fotorecepcii nasekomyh [Mechanisms of photoreception in insects]. Leningrad. Nauka, 1981. 213 p. (in Russian).
  15. Hatano E., Wada-Katsumata A., Schal C. Environmental decomposition of olefinic cuticular hydrocarbons of Periplaneta americana generates a volatile pheromone that guides social behaviour. Proc. Royal Soc. B. 2020. V. 287 (1921). P. 20192466. https://doi.org/10.1098/rspb.2019.2466
  16. Heimonen K., Salmela I., Kontiokari P., Weckström M. Large functional variability in cockroach photoreceptors: optimization to low light levels. J. Neurosci. 2006. V. 26. P. 13454–13462. https://doi.org/10.1523/JNEUROSCI.3767-06.2006
  17. Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J. Comp. Physiol. A. 2020. V. 206 (2). P. 259–272. https://doi.org/10.1007/s00359-019-01379-5
  18. Hinze A., Lantz J., Hill S.R., Ignell R. Mosquito host seeking in 3D using a versatile climate-controlled wind tunnel system. Front. Behav. Neurosci. 2021. V. 15. P. 643693. https://doi.org/10.3389/fnbeh.2021.643693
  19. Kainoh Y. Wind tunnel: a tool to test the flight response to semiochemicals. In: J.C. Lerner, U. Boldes (eds.). Wind Tunnels and Experimental Fluid Dynamics Research. 2011. P. 89–99.
  20. Kalueff A.V., Stewart A.M., Song C., Berridge K.C., Graybiel A.M., Fentress J.C. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 2016. V. 17. P. 45–59. https://doi.org/10.1038/nrn.2015.8
  21. Kelber A., Osorio D. From spectral information to animal colour vision: experiments and concepts. Proc. Royal Soc. B. 2010. V. 277 (1688). P. 1617–1625. https://doi.org/10.1098/rspb.2009.2118
  22. Kelly K.M., Mote M.I. Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroach, Periplaneta americana. J. Comp. Physiol. A. 1990a. V. 167. P. 745–756. https://doi.org/10.1007/bf00189765
  23. Kelly K.M., Mote M.I. Avoidance of monochromatic light by the cockroach Periplaneta americana. J. Insect Physiol. 1990b. V. 36 (4). P. 287–291. https://doi.org/10.1016/0022-1910(90)90113-T
  24. Knudsen G.K., Tasin M., Aak A., Thцming G. A wind tunnel for odor mediated insect behavioural assays. J. Vis. Exp. 2018. V. 30 (141). P. e58385. https://doi.org/10.3791/58385
  25. Mazokhin-Porshnyakov G.A. Zrenie nasekomyh [Insect vision]. Moscow. Nauka, 1965. 264 p. (in Russian).
  26. Menzel R. Spectral sensitivity and color vision in invertebrates. Comparative physiology and evolution of vision in invertebrates. Berlin, Heidelberg, Springer, 1979. P. 503–580.
  27. Menzi U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. A. 1987. V. 160. P. 11–21. https://doi.org/10.1007/BF00613437
  28. Miller J.R., Roelofs W.L. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. Journal of Chemical Ecology. 1978. V. 4 (2). P. 187–198. https://doi.org/10.1007/BF00988054
  29. Mizunami M. Neural organization of ocellar pathways in the cockroach brain. Journal of Comparative Neurology. 1995. V. 352 (3). P. 458–468. https://doi.org/10.1002/cne.903520310
  30. Mote M.I., Goldsmith T.H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. Journal of Experimental Zoology. 1970. V. 173 (2). P. 137–145. https://doi.org/10.1002/jez.1401730203
  31. Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol. Int. 1999. V. 16 (4). P. 415–429. https://doi.org/10.3109/07420529908998717
  32. Novikova E.S., Severina I.Y., Isavnina I.L., Zhukovskaya M.I. Down-regulation of the ultraviolet-sensitive visual pigment of the cockroach decreases the masking effect in short-wavelength illumination. Neurosci. Behav. Physiol. 2021. V. 51 (7). P. 1002–1007. https://doi.org/10.1007/s11055-021-01158-3
  33. Novikova E.S., Zhukovskaya M.I. Bright light induced freezing behavior in American cockroach, Periplaneta americana. Sensornye sistemy [Sensory systems]. 2017. V. 31 (1). P. 44–50 (in Russian).
  34. Nowinszky L. The orientation of insects by light–major theories. In: L. Nowinszky (ed.) The handbook of light trapping. Szombathely, Savaria University Press. 2003. P. 15–18.
  35. Okada J., Toh Y. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zool. Sci. 1998. V. 15 (6). P. 831–835. https://doi.org/10.2108/zsj.15.831
  36. Page T.L. Transplantation of the cockroach circadian pacemaker. Science. 1982. V. 216 (4541), P. 73–75. https://doi.org/10.1126/science.216.4541.73
  37. Page T.L., Koelling E. Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. Journal of Insect Physiology. 2003. V. 49 (7). P. 697–707. https://doi.org/10.1016/S0022-1910(03)00071-4
  38. Roelofs W.L., Cardé R.T. Responses of Lepidoptera to synthetic sex pheromone chemicals and their analogues. Annu. Rev. Entomol. 1977. V. 22 (1). P. 377–405. https://doi.org/10.1146/annurev.en.22.010177.002113
  39. Song B.M., Lee C.H. Toward a mechanistic understanding of color vision in insects. Front. in Neural Circuits. 2018. V. 12. P. 16. https://doi.org/10.3389/fncir.2018.00016
  40. Shchenikova A.V., Selitskaya O.G. Sistema laboratornogo testirovanija povedencheskih reakcij kukuruznogo motyl’ka [Behavioral test system for corn borer]. Nauchnoe obespechenie razvitija APK v uslovijah importozameshhenija. Sbornik nauchnyh trudov po materialam mezhdunarodnoj nauchno-prakticheskoj konferencii “Razvitie agropromyshlennogo kompleksa na osnove sovremennyh nauchnyh dostizhenij i cifrovyh tehnologij” [Scientific support for the development of the agro-industrial complex in the context of import substitution. Collection of scientific papers based on the materials of the international scientific and practical conference “Development of the agro-industrial complex based on modern scientific achievements and digital technologies”]. Saint-Petersburg – Pushkin. 2019. V. 1. P. 108–112 (in Russian).
  41. Subhash S., Shashank P.R. Wind Tunnel: A tool to test the flight response of insects to semiochemicals. In: A. Kumar Chakravarthy, V. Selvanarayanan (eds.). Experimental Techniques in Host-Plant Resistance. Singapore, Springer. 2019. P. 65–69.
  42. Tinbergen N. The study of instinct. Oxford, Clarendon Press. 1951.
  43. Van Der Kooi C.J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021. V. 66. P. 435–461. https://doi.org/10.1146/annurev-ento-061720-071644
  44. Warrant E.J. Vision in the dimmest habitats on earth. J. Comp. Physiol. A. 2004. V. 190. P. 765–789. https://doi.org/10.1007/s00359-004-0546-z
  45. Warrant E. Nocturnal Vision. In: R. H. Masland, T. Albright (eds.). The senses. San Diego, Elsevier. 2008. P. 54–82.
  46. Warrant E.J., Kelber A., Gisleґn A., Greiner B., Ribi W., Wcislo W.T. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 2004. V. 14. P. 1309–1318. https://doi.org/10.1016/j.cub.2004.07.057
  47. Warrant E., Somanathan H. Colour vision in nocturnal insects. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2022. V. 377 (1862). P. 20210285. https://doi.org/10.1098/rstb.2021.0285
  48. Wolda H. Diversity, diversity indices and tropical cockroaches. Oecologia. 1983. 58. P. 290–298. https://doi.org/10.1007/BF00385226
  49. Zhukovskaya M., Yanagawa A., Forschler B. Grooming behavior as a mechanism of insect disease defense. Insects. 2013. V. 4 (4). P. 609–630. https://doi.org/10.3390/insects4040609
  50. Zhukovskaya M., Novikova E., Saari P., Frolov R.V. Behavioral responses to visual overstimulation in the cockroach Periplaneta americana L. J. Comp. Physiol. A. 2017. V. 203 (12). P. 1007–1015. https://doi.org/10.1007/s00359-017-1210-8
  51. Zhukovskaya M.I. Behavioral evidence for a cockroach (Periplaneta americana) aggregation pheromone. J. Evol. Biochem. Physiol. 1991. V. 27 (5). P. 496–500 (in Russian).
  52. Zhukovskaya M.I., Novikova E.S., Severina I.Y., Isavnina I.L. Daunreguljacija zritel’nyh pigmentov tarakana s pomoshh’ju metoda RNK-interferencii [Downregulation of cockroach visual pigments by RNA interference]. J. Evol. Biochem. Physiol. 2020. V. 56 (7). P. 587–597. https://doi.org/10.31857/S0044452920071353 (in Russian).
  53. Zhukovskaya M.I., Severina I.Yu., Novikova Ye.S. Anthropogenic light pollution: impact on insects. Biosfera. 2022. V. 14 (2). P. 126–136. https://doi.org/10.24855/biosfera.v14i2.669 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (392KB)
3.

Download (22KB)
4.

Download (36KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies