Experimental methods to study the sound source localization by distance in humans

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents current methods used for researches of the auditory distance perception. The monaural and binaural cues of stationary and moving sources localization are considered. The role of binaural hearing in estimating the distance to a sound source is discussed in detail. The involvement of localization cues in absolute and relative distance estimation is described. The advantages and limitations of different experimental practices for forming virtual sound images are discussed. The special section discusses approaches to the creation of moving sound images. The results of auditory distance estimations obtained by different methods for stationary and moving sound sources are summarized. The review includes the results of the authors' own studies and a description of promising experimental and applied approaches of this research field.

About the authors

I. G. Andreeva

Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences

Author for correspondence.
Email: ig-andreeva@mail.ru
Russia, 194223, Saint Petersburg, pr. Torez, 44

V. M. Sitdikov

Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences

Email: ig-andreeva@mail.ru
Russia, 194223, Saint Petersburg, pr. Torez, 44

E. A. Ogorodnikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: ig-andreeva@mail.ru
Russia, 199034, Saint Petersburg, Makarov emb., 6

References

  1. Altman J.A. Prostranstvennyi slukh [Spatial hearing]. Sankt-Petersburg: Institut fiziologii im. I.P. Pavlova RAN, 2011. 311 p. (in Russian).
  2. Andreeva I.G. Virtual’naya akusticheskaya real’nost': psikhoakusticheskie issledovaniya [Virtual Acoustical Reality: Psychoacoustical Studies]. Sensornye sistemy [Sensory systems]. 2004a. 18 (3). P. 251–264 (in Russian).
  3. Andreeva I.G. Porogovaya dlitel’nost' signalov pri vospriyatii chelovekom radial’nogo dvizheniya zvukovykh obrazov razlichnogo spektral’nogo sostava [Threshold duration of signal in human perception of radial motion of sound image with different spectral bands]. Sensornye sistemy [Sensory systems]. 2004b. V. 18 (3). P. 233–238 (in Russian).
  4. Andreeva I.G., Altman J.A. O vospriyatii chelovekom skorosti priblizheniya i udaleniya zvukovogo obraza, dvizhushchegosya pod raznymi azimutal’nymi uglami [On human perception of the speed of approach and removal of a sound image moving at different azimuth angles]. Sensornye sistemy [Sensory systems]. 2001. V. 15 (4). P. 295–300 (in Russian).
  5. Andreeva I.G., Gvozdeva A.P. Porogi nepreryvnogo priblizheniya zvukovykh istochnikov s ritmicheskimi strukturami, kharakternymi dlya biologicheski znachimykh zvukovykh signalov [Perception thresholds of continuously approaching sound sources with rhythmic structures specific to biologically significant signals]. Zhurnal evolyutsionnoi biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 2015. V. 51 (1). P. 29–36 (in Russian).
  6. Andreeva I.G., Bakhtina A.V., Gvozdeva A.P. Razreshayushchaya sposobnost' slukha cheloveka po rasstoyaniyu pri priblizhenii i udalenii istochnikov zvuka raznogo spektral’nogo sostava [Human’s hearing resolution in case of localizing of approaching and withdrawing sound images with various spectral structures]. Sensornye sistemy [Sensory systems]. 2014. V. 28 (4). P. 3–12 (in Russian).
  7. Andreeva I.G., Gvozdeva A.P., Ogorodnikova E.A. Porogovaya dlitel’nost' zvukovykh signalov dlya otsenki priblizheniya i udaleniya ikh istochnika pri modelirovanii snizheniya vysokochastotnogo slukha [Threshold duration of sound signals for their sources approaching and withdrawing under condition of high-frequency hearing loss modeling]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (4). P. 277–284 (in Russian). https://doi.org/10.1134/S0235009218040029
  8. Andreeva I.G., Sitdikov V.M., Gvozdeva A.P., Ogorodnikova E.A., Golovanova L.E., Klishova E.A. Sposob skriningovoi otsenki sposobnosti cheloveka k razlicheniyu polozheniya istochnikov zvuka po rasstoyaniyu [Method for screening assessment of a person’s ability to distinguish between the position of sound sources by distance]. Patent RF. № 2754342. 2021 (in Russian).
  9. Blauert I. Prostranstvennyi slukh [Spatial hearing]. Moscow: Energiya. 1979. 224 p. (in Russian).
  10. Vartanyan I.A., Chernigovskaya T.V. Vliyanie razlichnykh parametrov akusticheskoi stimulyatsii na otsenku chelovekom izmeneniya rasstoyaniya ot istochnika zvuka [Influence of various parameters of acoustic stimulation on human assessment of changes in distance from the sound source]. Fiziologicheskii zhurnal SSSR [Physiological Journal of the USSR]. 1980. V. 66 (1). P. 101–108 (in Russian).
  11. Vartanyan I.A., Andreeva I.G., Mazing A.Yu., Marko-vich A.M. Otsenka vospriyatiya chelovekom skorosti i uskoreniya priblizheniya i udaleniya istochnika zvuka [Assessment of human perception of the speed and acceleration of the approach and removal of the sound source]. Fiziologiya cheloveka [Human physiology]. 1999. V. 25 (5). P. 38–47 (in Russian).
  12. Viskov O.V. O vospriyatii dvizheniya slitnogo slukhovogo obraza. Fiziologiya cheloveka [Human physiology]. 1975. V. 1 (2). P. 371–376 (in Russian).
  13. Gvozdeva A.P., Andreeva I.G. Razreshayushchaya sposobnost' slukha cheloveka po rasstoyaniyu pri lokalizatsii priblizhayushchikhsya i udalyayushchikhsya nepreryvnykh i preryvistykh zvukovykh obrazov [Spatial resolution of human auditory system in case of localization of approaching and withdrawing continuous and broken sound images]. Sensornye sistemy [Sensory systems]. 2016. V. 30 (2). P. 114–153 (in Russian).
  14. Gvozdeva A.P., Andreeva I.G. Metod otsenki vremennykh pokazatelei prostranstvennogo slukha pri sensonevral’noi tugoukhosti 2–3 stepeni [Method for assessing temporal indicators of spatial hearing in sensorineural hearing loss of 2–3 degrees]. Mat. XXXII Sessii Rossiiskogo Akusticheskogo Obshchestva [Proceedings of the XXXII Session of the Russian Acoustical Society]. Moscow, 2019. P. 113 (in Russian).
  15. Kozhevnikova E.V. Nekotorye kharakteristiki vospriyatiya chelovekom priblizhayushchegosya zvukovogo obraza [Some characteristics of human perception of an approaching sound image]. Fiziologicheskii zhurnal SSSR [Physiological Journal of the USSR]. 1980. V. 66 (1). P. 109–112 (in Russian).
  16. Kozhevnikova E.V. Otsenka chelovekom skorosti priblizheniya istochnika zvuka [Human estimate of the speed of approach of the sound source]. Fiziologiya cheloveka [Human physiology]. 1985. V. 11 (3). P. 368–373 (in Russian).
  17. Kozhevnikova E.V. Vospriyatie priblizheniya i udaleniya zvuka shagov. Usloviya vozniknoveniya pertseptivnogo effekta dvizheniya [Perception of the approach and removal of the sound of footsteps. Conditions for the occurrence of the perceptual effect of movement]. Sensornye sistemy [Sensory systems]. 1989. V. 3 (1). P. 93–100 (in Russian).
  18. Ogorodnikova E.A., Pak S.P. Razlichenie chelovekom skorosti dvizheniya pri frontal’nom priblizhenii istochnika zvuka [Distinguishing by a person the speed of movement when the sound source is approached frontally]. Fiziologiya cheloveka [Human physiology]. 1998. V. 24 (2). P. 51–55 (in Russian).
  19. Pak S.P., Ogorodnikova E.A. Formirovanie akusticheskikh stimulov, modeliruyushchikh dvizhenie istochnika zvuka pri ego priblizhenii i udalenii [Formation of acoustic stimuli modeling the movement of the sound source approaching and receding]. Sensornye sistemy [Sensory systems]. 1997. V. 11 (3). P. 346–351 (in Russian).
  20. Aggius-Vella E., Gori M., Campus C., Moore B.C.J., Pardhan S., Kolarik A.J., Van der Stoep N. Auditory distance perception in front and rear space. Hearing Research. 2022. V. 417: 108468. https://doi.org/10.1016/j.heares.2022.
  21. Ahveninen J., Kopčo N., Jääskeläinen I.P. Psychophysics and neuronal bases of sound localization in humans. Hearing research. 2014. V. 307. P. 86–97. https://doi.org/10.1016/j.heares.2013.07.008
  22. Akeroyd M.A. An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners. Trends in Hearing. 2014. 18: 2331216514560442. https://doi.org/10.1177/2331216514560442
  23. Akeroyd M.A., Gatehouse S., Blaschke J. The detection of differences in the cues to distance by elderly hearing-impaired listeners. J. Acoust. Soc. Am. 2007. V. 121. N 2. P. 1077–1089. https://doi.org/10.1121/1.2404927
  24. Altman J.A., Andreeva I.G. Monaural perception and binaural perception of approaching and withdrawing auditory images in humans. Int. J. Audiol. 2004. V. 43. N 4. P. 227–235. https://doi.org/10.1080/14992020400050031
  25. Andreeva I.G. Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Hum Physiol. 2018. V. 44. N 2. P. 226–236. https://doi.org/10.1134/S0362119718020020
  26. Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances. Acta Acustica united with Acustica. 2019. V. 105. N. 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  27. Andreeva I.G., Klishova E.A., Gvozdeva A.P., Sitdikov V.M., Golovanova L.E., Ogorodnikova E.A. Comparative assessment of spatial and temporal resolutions in the localization of an approaching and receding broadband noise source in healthy subjects and patients with first-degree symmetric sensorineural hearing loss. Human Physiology. 2020. V. 46. N. 5. P. 465–472. https://doi.org/10.1134/S0362119720040039
  28. Armstrong C., Thresh L., Murphy D., Kearney G. A. Perceptual evaluation of individual and non-individual HRTFs: A case study of the SADIE II database. Appl. Sci. 2018. V. 8. P. 2029. https://doi.org/10.3390/app8112029
  29. Ashmead D.H., Leroy D., Odom R.D. Perception of the relative distances of nearby sound sources. Perception & Psychophysics. 1990. V. 47. P. 326–331. https://doi.org/10.3758/BF03210871
  30. Begault D.R. Preferred sound intensity increase for sensation of half distance. Perceptual and motor skills. 1991. 72 (3), 1019–1029. https://doi.org/10.2466/pms.1991.72.3.1019
  31. Begault D.R., Wenzel E.M., Anderson M.R. Direct Comparison of the Impact of Head Tracking, Reverberation, and Individualized Head-Related Transfer Functions on the Spatial Perception of a Virtual Speech Source. J. Audio Eng. Soc. 2001. V. 49. P. 904–916.
  32. Bertelson P., Radeau M. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept. Psychophys. 1981. V. 29. P. 578–584. https://doi.org/10.3758/bf03207374
  33. Best V., Baumgartner R., Lavandier M., Majdak P., Kopčo N. Sound Externalization: A Review of Recent Research. Trends in Hearing. 2020. V. 24. https://doi.org/10.1177/2331216520948390
  34. Blauert J. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge. MIT Press, 1997. 494 pp.
  35. Bronkhorst A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics. 2015. V. 77 (5). P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  36. Brungart D.S., Rabinowitz W.M., Durlach N.I. Auditory localization of a nearby point source. J Acoust Soc Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417577
  37. Brungart D.S. Rabinowitz W.M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 1999. V. 106. P. 1465–1479. https://doi.org/10.1121/1.427180
  38. Butler R.A., Levy E.T., Neff W.D. Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance. 1980. V. 6 (4). P. 745. https://doi.org/10.1037/0096-1523.6.4.745
  39. Calamia P.T., Hixson E.L. Measurement of the head-related transfer function at close range. J. Acoust. Soc. Am. 1997. V. 102. P. 3117. https://doi.org/10.1121/1.420569
  40. Carlile S., Leung J. The perception of auditory motion. Trends in hearing. 2016. 20: 2331216516644254. https://doi.org/10.1177/2331216516644254
  41. Catic J., Santurette S., Buchholz J.M., Gran F., Dau T. The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America. 2013. 134 (2): 1232–1241. https://doi.org/10.1121/1.4812264
  42. Chabot-Leclerc A., MacDonald E.N., Dau T. Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. The Journal of the Acoustical Society of America. 2016. 140 (1), 192–205.
  43. Cochran P., Throop J., Simpson W.E. Estimation of distance of a source of sound. The American journal of psychology. 1968. V. 81 (2). P. 198–206. https://doi.org/10.2307/1421264
  44. Coleman P.D. Failure to localize the source distance of an unfamiliar sound. J. Acoust. Soc. Am. 1962. V. 34. P. 345–346.
  45. Coleman P.D. An analysis of cues to auditory depth perception in free space. Psychological Bulletin. 1963. V. 60 (3). P. 302–315. https://doi.org/10.1037/h0045716
  46. Coudert A., Verdelet G., Reilly K.T., Truy E., Gaveau V. Intensive Training of Spatial Hearing Promotes Auditory Abilities of Bilateral Cochlear Implant Adults: A Pilot Study. Ear and Hearing. 2022. https://doi.org/10.1097/AUD.0000000000001256
  47. Duda R.O., Martens W.L. Range dependence of the response of a spherical head model. J. Acoust. Soc. Am. 1998. V. 104 (5). P. 3048–3058. https://doi.org/10.1121/1.423886
  48. Edwards A.S. Accuracy of auditory depth perception. Journal of General Psychology. 1955. V. 52. P. 327–329. https://doi.org/0.1080/00221309.1955.9920247
  49. Fontana F., Rocchesso D. Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception. 2008. V. 5 (3). P. 1–15. https://doi.org/10.1145/1402236.1402240
  50. Gardner M.B. Distance Estimation of 0° or Apparent 0°– Oriented Speech Signals in Anechoic Space. J. Acoust. Soc. Am. 1969. V. 45 (1). P. 47–53. https://doi.org/10.1121/1.1911372
  51. Gordon M.S., Russo F.А., MacDonald E. Spectral information for detection of acoustic time to arrival. Attention Perception & Psychophysics. 2013. V. 75 (4). P. 738–750. https://doi.org/0.3758/s13414-013-0424-2
  52. Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane. The Journal of the Acoustical Society of America. 1986. 79 (6): 1939–1949. https://doi.org/10.1121/1.393201
  53. Guo Z., Lu Y., Wang L., Yu G. Discrimination experiment of sound distance perception for a real source in near-field. EAA Spatial Audio Signal Processing Symposium. 2019. P. 85–89. https://doi.org/10.25836/sasp.2019.25
  54. Gvozdeva A.P., Andreeva I.G. The Minimum Audible Movement Distance for Localization of Approaching and Receding Broadband Noise with a Reduced Fraction of High-Frequency Spectral Components Typical of Prebyscusis. Journal of Evolutionary Biochemistry and Physiology. 2019. V. 55 (6). P. 463–474. doi: 10.1134/S0022093019060048
  55. Hall D.A., Moore D.R. Auditory neuroscience: The salience of looming sounds. Current Biology, 2003. 13 (3), R91–R93. https://doi.org/10.1016/s0960-9822(03)00034-4
  56. Hartley R.V.L., Fry T.C. The Binaural Location of Pure Tones. Physical Review. 1921. 18 (6), 431. https://doi.org/10.1103/PhysRev.18.431
  57. Hartmann W.M., Wittenberg A. On the externalization of sound images. J. Acoust. Soc. Am. 1996. V. 99 (6). P. 3678–3688. https://doi.org/10.1121/1.414965
  58. Haustein B.G. Hypothesen über die einohrige Entfernungswahrnehmung des menschlichen Gehörs (Hypotheses about the perception of distance in human hearing with one ear). Hochfrequenztech. u. Elektroakustik. 1969. 78: 46–57.
  59. Hirsch R.H. Perception of the range of a sound source of unknown strength. J. Acoust. Soc. Am. 1968. V. 43. P. 373–374. https://doi.org/10.1121/1.1910789
  60. Holt R.E., Thurlow W.R. Subject orientation and judgment of distance of a sound source. Acoust. Soc. Am. 1969. V. 46 (6B). P. 1584–1585. https://doi.org/10.1121/1.1911909
  61. Jenny C., Reuter C. Usability of individualized head-related transfer functions in virtual reality: Empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games. 2020. V. 8: e17576. https://doi.org/10.2196/17576
  62. Kearney G., Gorzel M., Rice H., Boland F. Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica. 2012. V. 98. P. 61–71. https://doi.org/10.3813/AAA.918492
  63. Kim H-Y., Suzuki Y., Takane S., Sone T. Control of auditory distance perception based on the auditory parallax model. Applied Acoustics. 2001. V. 62. Is. 3. P. 245–270. https://doi.org/10.1016/S0003-682X(00)00023-2
  64. Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten. Percept. Psychophys. 2016. V. 78 (2). P. 373–395. https://doi.org/10.3758/s13414-015-1015-1
  65. Kolarik A.J., Raman R., Moore B.C.J., Сirstea S., Gopalakrishnan S., Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports. 2020. V. 10. P. 7169. https://doi.org/10.1038/s41598-020-64306-8
  66. Kopčo N., Shinn-Cunningham B.G. Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America. 2003. 114 (5), 2856–2870. https://doi.org/10.1121/1.1616577
  67. Kopčo N., Shinn-Cunningham B.G. Effect of stimulus spectrum on distance perception for nearby sourcesa). Acoust. Soc. Am. 2011. V. 130 (3). P. 1530–1541. https://doi.org/10.1121/1.3613705
  68. Koroleva I.V., Ogorodnikova E.A. Chapter 30: Modern achievements in cochlear and brainstem auditory implantation. In: Neural Networks and Neurotechnologies (eds: Yu. Shelepin, E. Ogorodnikova, N. Solovyev, E. Yakimova). SPb, Publish by VVM, 2019. P. 231–249.
  69. Lambert R.M. Dynamic theory of sound-source localization. J. Acoust. Soc. Am. 1974. V. 56. P. 165–171. https://doi.org/10.1121/1.1903248
  70. Liu Y., Xie B.S. Auditory discrimination on the distance dependence of near-field head-related transfer function magnitudes. Proc. Mtgs. Acoust. 2013. 19: 050048. https://doi.org/10.1121/1.4799196
  71. Lounsbury B.F., Butler R.A. Estimation of distances of recorded sounds presented through headphones. Scandinavian audiology. 1979. 8 (3). 145–149. https://doi.org/10.3109/01050397909076315
  72. Lundbeck M., Grimm G., Hohmann V., Laugesen S., Neher T. Sensitivity to angular and radial source movements as a function of acoustic complexity in normal and impaired hearing. Trends in hearing. 2017. 21: 2331216517717152. https://doi.org/10.1177/2331216517717152
  73. Marrone N., Mason C.R., Kidd Jr.G. The effects of hearing loss and age on the benefit of spatial separation between multiple talkers in reverberant rooms. The Journal of the Acoustical Society of America. 2008. 124 (5): 3064–3075. https://doi.org/10.1121/1.2980441
  74. McAnally K.I., Martin R.L. Sound localization with head movement: Implications for 3-d audio displays. Front. Neurosci. 2014. V. 8. P. 1–6. https://doi.org/10.3389/fnins.2014.00210
  75. Mershon D.H., Bowers J.N. Absolute and relative cues for the auditory perception of egocentric distance. Perception. 1979. V. 8 (3). P. 311–322. https://doi.org/10.1068/p080311
  76. Mershon D.H., King L.E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Perception & Psychophysics. 1975. V. 18 (6). P. 409–415. https://doi.org/10.3758/BF03204113
  77. Mershon D.H., Ballenger W.L., Little A.D., McMurtry P.L., Buchanan J.L. Effects of room reflectance and background noise on perceived auditory distance. Perception. 1989. 18 (3): 403–416. https://doi.org/10.1068/p180403
  78. Middlebrooks J.C. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J. Acoust. Soc. Am. 1999. V. 106. P. 1493–1510. https://doi.org/10.1121/1.427147
  79. Middlebrooks J.C. Sound localization. Handbook of clinical neurology. 2015. 129: 99–116. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  80. Middlebrooks J.C., Green D.M. Sound localization by human listeners. Annual review of psychology. 1991. 42 (1): 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
  81. Molino J. Perceiving the Range of a Sound Source When the Direction is Known. J. Acoust. Soc. Am. 1973. V. 53. P. 1301–1304. https://doi.org/10.1121/1.1913469
  82. Møller H., Sørensen M.F., Hammershøi D., Jensen C.B. Head-Related Transfer Functions of Human Subjects. J. Audio Eng. Soc. 1995. V. 43. P. 300–321.
  83. Moore B.C.J. An Introduction to the Psychology of Hearing. Leiden. Brill. 2012. 442 p.
  84. Moore D.R., King A.J. Auditory perception: The near and far of sound localization. Current Biology. 1999. V. 9(10), P. R361–R363. https://doi.org/10.1016/S0960-9822(99)80227-9
  85. Naguib M., Wiley R.H. Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal behavior. 2001. 62 (5), 825–837. https://doi.org/10.1006/anbe.2001.1860
  86. Neuhoff J.G. Perceptual bias for rising tones. Nature. 1998. 395 (6698): 123–124. https://doi.org/10.1038/25862
  87. Oberem J., Richter J.G., Setzer D., Seibold J., Koch I., Fels J. Experiments on localization accuracy with non-individual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv. 2020. P. 1–11. https://doi.org/10.1101/2020.03.31.011650
  88. Otani M., Hirahara T., Ise S. Numerical study on source-distance dependency of head-related transfer functions. The Journal of the Acoustical Society of America. 2009. 125 (5), 3253–3261. https://doi.org/10.1121/1.3111860
  89. Parseihian G., Jouffrais C., Katz B.F. Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience. 2014. V. 8. 269. https://doi.org/10.3389/fnins.2014.00269
  90. Pelzer R., Dinakaran M., Brinkmann F., Lepa, S., Grosche P., Weinzierl S. Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am. 2020. V. 148. P. 3809–3817. https://doi.org/10.1121/10.0002884
  91. Perrott D.R., Ambarsoom H., Tucker J. Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J. Acoust. Soc. Am. 1987. V. 82 (5). P. 1637. https://doi.org/10.1121/1.395155
  92. Perrott D.R., Costantino B., Cisneros J. Auditory and visual localization performance in a sequential discrimination task. The Journal of the Acoustical Society of America. 1993. 93 (4), 2134–2138. https://doi.org/10.1121/1.406675
  93. Petersen J. Estimation of loudness and apparent distance of pure tones in a free field. Acta Acustica united with Acustica. 1990. 70(1): 61–65.
  94. Risoud M., Hanson J.N., Gauvrit F., Renard C., Lemesre P.E., Bonne N.X., Vincent C. Sound source localization. European annals of otorhinolaryngology, head and neck diseases. 2018. 135 (4): 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
  95. Rosenblum L.D., Carello C., Pastore R.E. Relative effectiveness of three stimulus variables for locating a moving sound source. Perception. 1987. 16 (2): 175–186. https://doi.org/10.1068/p160175
  96. Rummukainen O.S., Robotham T., Habets E.A. Head-Related Transfer Functions for Dynamic Listeners in Virtual Reality. Applied Sciences. 2021. 11 (14): 6646. https://doi.org/10.3390/app11146646
  97. Russell M.K. Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. Front. Psychol. 2022. V. 13. P. 831670. https://doi.org/10.3389/fpsyg.2022.831670
  98. Saberi K., Perrott D.R. Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. Journal of the Acoustical Society of America. 1990. 87: 1732–1737. https://doi.org/10.1121/1.399422
  99. Seifritz E., Neuhoff J.G., Bilecen D., Scheffler K., Mustovic H. Neural processing of auditory looming in the human brain. Current Biology. 2002. V. 12. P. 2147–2151. https://doi.org/10.1016/S0960-9822(02)01356-8
  100. Shinn-Cunningham B.G., Santarelli S., Kopco N. Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America. 2000. 107 (3): 1627–1636. https://doi.org/10.1121/1.428447
  101. Shinn-Cunningham B.G., Streeter T., Gyss J.F. Perceptual plasticity in spatial auditory displays. ACM Transactions on Applied Perception (TAP). 2005. 2 (4): 418–425. https://doi.org/10.1145/1101530.1101536
  102. Simpson W.E., Stanton L.D. Head movement does not facilitate perception of the distance of a source of sound. The American journal of psychology. 1973. V. 86 (1). P. 151–159. https://doi.org/10.2307/1421856
  103. Stevens S.S., Guirao M. Loudness, reciprocality, and partition scales. Acoust. Soc. Am. 1962. V. 34 (9B). P. 1466–1471. https://doi.org/10.1121/1.1918370
  104. Strybel T.Z., Perrott D.R. Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. J. Acoust. Soc. Am. 1984. V. 76 (1). P. 318–320. https://doi.org/10.1121/1.391064
  105. Strybel T.Z., Manligas C.L., Perrott D.R. Auditory apparent motion under binaural and monaural listening conditions. Perception & Psychophysics. 1989. 45 (4): 371–377. https://doi.org/10.3758/BF03204951
  106. Strybel T.Z., Manligas C.L., Chan O., Perrott D.R. A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities. Perception & Psychophysics. 1990. 47 (5): 439–448. https://doi.org/10.3758/BF03208177
  107. Strybel T.Z., Manllgas C.L., Perrott D.R. Minimum audible movement angle as a function of the azimuth and elevation of the source. Human factors. 1992. 34 (3): 267–275. https://doi.org/10.1177/001872089203400302
  108. Vartanyan I.A., Andreeva I.G. A psychophysiological study of auditory illusions of approach and withdrawal in the context of the perceptual environment. The Spanish journal of psychology. 2007. V. 10 (2). P. 266–276. https://doi.org/10.1017/S1138741600006533
  109. von Békésy G. The moon illusion and similar auditory phenomena. The American journal of psychology. 1949. 62 (4): 540–552. https://doi.org/10.2307/1418558
  110. Warren R.M. Auditory perception: A new analysis and synthesis. Cambridge, UK. Cambridge University Press, 1999. 241 p.
  111. Wenzel E.M., Arruda M., Kistler D.J., Wightman F.L. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am. 1993. V. 94. P. 111–23. https://doi.org/10.1121/1.407089
  112. Westermann A., Buchholz J.M. Release from masking through spatial separation in distance in hearing impaired listeners. In: Proceedings of Meetings on Acoustics ICA2013. Acoustical Society of America. 2013. V. 19. N. 1. P. 050156. https://doi.org/10.1121/1.4906581
  113. Wightman E.R., Firestone F.A. Binaural localization of pure tones. The Journal of the Acoustical Society of America. 1930. 2 (2): 271–280. https://doi.org/10.1121/1.1915255
  114. Yu G., Wang L. Effect of Individualized Head-Related Transfer Functions on Distance Perception in Virtual Reproduction for a Nearby Sound Source. Archives of Acoustics. 2019. V. 44, N. 2 P. 251–258. https://doi.org/10.24425/aoa.2019.128488
  115. Zahorik P. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc. Am. 2002. V. 111. P. 1832–1846. https://doi.org/10.1121/1.1458027
  116. Zahorik P., Wightman F.L. Loudness constancy with varying sound source distance. Nature Neuroscience. 2001. V. 4. P. 78–83. https://doi.org/10.1038/82931
  117. Zahorik P., Brungart D.S., Bronkhorst A.W. Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica. 2005. V. 91. N 3. P. 409–420.
  118. Zhang M., Qiao Y., Wu X., Qu T. Distance-dependent Modeling of Head-related Transfer Functions. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 276–280. https://doi.org/10.1109/ICASSP.2019.8683756
  119. Zhong X.L., Xie B.S. Head-related transfer functions and virtual auditory display. In: Soundscape Semiotics-Localization and Categorization. 2014. https://doi.org/10.5772/56907

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (74KB)
3.

Download (137KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies