Экспериментальные подходы к изучению локализации источников звука по расстоянию

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе представлен обзор современных методов, которых применяют для исследования способности локализации источников звука по расстоянию. Рассмотрены монауральные и бинауральные признаки локализации. Подробно обсуждается роль бинаурального слуха в оценке расстояния до источника звука. Показано участие признаков локализации в абсолютной и относительной оценке расстояния. Рассмотрены преимущества и ограничения разных экспериментальных подходов к созданию виртуальных звуковых образов. В особом разделе обсуждаются подходы к формированию движущихся звуковых образов. Даны сводные материалы по результатам оценки слуховой разрешающей способности по расстоянию, полученные разными методами для неподвижных и движущихся источников звука. В обзор включены результаты собственных исследований авторов и описание перспективных экспериментальных и прикладных подходов к развитию данного направления.

Об авторах

И. Г. Андреева

Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии
им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: ig-andreeva@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза, д. 44

В. М. Ситдиков

Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии
им. И.М. Сеченова РАН

Email: ig-andreeva@mail.ru
Россия, 194223, Санкт-Петербург, пр. Тореза, д. 44

Е. А. Огородникова

Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН

Email: ig-andreeva@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 6

Список литературы

  1. Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН. 2011. 311 с.
  2. Андреева И.Г. Виртуальная акустическая реальность: психоакустические исследования. Сенсорные системы. 2004а. Т. 18. № 3. С. 251–264.
  3. Андреева И.Г. Пороговая длительность сигналов при восприятии человеком радиального движения звуковых образов различного спектрального состава. Сенсорные системы. 2004б. Т. 18. № 3. С. 233–238.
  4. Андреева И.Г., Альтман Я.А. О восприятии человеком скорости приближения и удаления звукового образа, движущегося под разными азимутальными углами. Сенсорные системы. 2001. Т. 15. № 4. С. 295–300.
  5. Андреева И.Г., Гвоздева А.П. Пороги непрерывного приближения звуковых источников с ритмическими структурами, характерными для биологически значимых звуковых сигналов. ЖЭБФ. 2015. Т. 51. № 1. С. 29–36.
  6. Андреева И.Г., Бахтина А.В., Гвоздева А.П. Разрешающая способность слуха человека по расстоянию при приближении и удалении источников звука разного спектрального состава. Сенсорные системы. 2014. Т. 28. № 4. С. 3–12.
  7. Андреева И.Г., Гвоздева А.П., Огородникова Е.А. Пороговая длительность звуковых сигналов для оценки приближения и удаления их источника при моделировании снижения высокочастотного слуха. Сенсорные системы. 2018. Т. 32. № 4. С. 277–284. https://doi.org/10.1134/S0235009218040029
  8. Андреева И.Г., Ситдиков В.М., Гвоздева А.П., Огородникова Е.А., Голованова Л.Е., Клишова Е.А. Способ скрининговой оценки способности человека к различению положения источников звука по расстоянию. Патент РФ. № 2754342. 2021.
  9. Блауэрт Й. Пространственный слух. М.: Энергия. 1979. 224 с.
  10. Вартанян И.А., Черниговская Т.В. Влияние различных параметров акустической стимуляции на оценку человеком изменения расстояния от источника звука. Физиол. журн. СССР. 1980. Т. 66. № 1. С. 101–108.
  11. Вартанян И.А., Андреева И.Г., Мазинг А.Ю., Маркович А.М. Оценка восприятия человеком скорости и ускорения приближения и удаления источника звука. Физиология человека. 1999. Т. 25. № 5. С. 38–47.
  12. Висков О.В. О восприятии движения слитного слухового образа. Физиология человека. 1975. Т. 1. № 2. С. 371–376.
  13. Гвоздева А.П., Андреева И.Г. Разрешающая способность слуха человека по расстоянию при локализации приближающихся и удаляющихся непрерывных и прерывистых звуковых образов. Сенсорные системы. 2016. Т. 30. № 2. С. 114–153.
  14. Гвоздева А.П., Андреева И.Г. Метод оценки временных показателей пространственного слуха при сенсоневральной тугоухости 2–3 степени. Мат. XXXII Сессии Российского Акустического Общества. М., 2019. С. 113.
  15. Кожевникова Е.В. Некоторые характеристики восприятия человеком приближающегося звукового образа. Физиол. журн. СССР. 1980. Т. 66. № 1. С. 109–112.
  16. Кожевникова Е.В. Оценка человеком скорости приближения источника звука. Физиология человека. 1985. Т. 11. № 3. С. 368–373.
  17. Кожевникова Е.В. Восприятие приближения и удаления звука шагов. Условия возникновения перцептивного эффекта движения. Сенсорные системы. 1989. Т. 3. № 1. С. 93–100.
  18. Огородникова Е.А., Пак С.П. Различение человеком скорости движения при фронтальном приближении источника звука. Физиология человека. 1998. Т. 24. № 2. С. 51–55.
  19. Пак С.П., Огородникова Е.А. Формирование акустических стимулов, моделирующих движение источника звука при его приближении и удалении. Сенсорные системы. 1997. Т. 11. № 3. С. 346–351.
  20. Aggius-Vella E., Gori M., Campus C., Moore B.C.J., Pardhan S., Kolarik A.J., Van der Stoep N. Auditory distance perception in front and rear space. Hearing Research. 2022. V. 417. P. 108468. https://doi.org/10.1016/j.heares.2022
  21. Ahveninen J., Kopčo N., Jääskeläinen I.P. Psychophysics and neuronal bases of sound localization in humans. Hearing research. 2014. V. 307. P. 86–97. https://doi.org/10.1016/j.heares.2013.07.008
  22. Akeroyd M.A., Gatehouse S., Blaschke J. The detection of differences in the cues to distance by elderly hearing-impaired listeners. J. Acoust. Soc. Am. 2007. V. 121. № 2. P. 1077–1089. https://doi.org/10.1121/1.2404927
  23. Altman J.A., Andreeva I.G. Monaural perception and binaural perception of approaching and withdrawing auditory images in humans. Int. J. Audiol. 2004. V. 43. № 4. P. 227–235. https://doi.org/10.1080/14992020400050031
  24. Andreeva I.G. Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Hum Physiol. 2018. V. 44. № 2. P. 226–236. https://doi.org/10.1134/S0362119718020020
  25. Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances. Acta Acustica united with Acustica. 2019. V. 105. № 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  26. Andreeva I.G., Klishova E.A., Gvozdeva A.P., Sitdi-kov V.M., Golovanova L.E., Ogorodnikova E.A. Comparative assessment of spatial and temporal resolutions in the localization of an approaching and receding broadband noise source in healthy subjects and patients with first-degree symmetric sensorineural hearing loss. Human Physiology. 2020. V. 46. № 5. P. 465–472. https://doi.org/10.1134/S0362119720040039
  27. Armstrong C., Thresh L., Murphy D., Kearney G.A. Perceptual evaluation of individual and non-individual HRTFs: A case study of the SADIE II database. Appl. Sci. 2018. V. 8. P. 2029. https://doi.org/10.3390/app8112029
  28. Ashmead D.H., Leroy D., Odom R.D. Perception of the relative distances of nearby sound sources. Perception & Psychophysics. 1990. V. 47. P. 326–331. https://doi.org/10.3758/BF03210871
  29. Begault D.R. Preferred sound intensity increase for sensation of half distance. Perceptual and motor skills. 1991. V. 72. № 3. P. 1019–1029. https://doi.org/10.2466/pms.1991.72.3.1019
  30. Begault D.R., Wenzel E.M., Anderson M.R. Direct Comparison of the Impact of Head Tracking, Reverberation, and Individualized Head-Related Transfer Functions on the Spatial Perception of a Virtual Speech Source. J. Audio Eng. Soc. 2001. V. 49. P. 904–916.
  31. Bertelson P., Radeau M. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept. Psychophys. 1981. V. 29. P. 578–584. https://doi.org/10.3758/bf03207374
  32. Best V., Baumgartner R., Lavandier M., Majdak P., Kopčo N. Sound Externalization: A Review of Recent Research. Trends in Hearing. 2020. V. 24. https://doi.org/10.1177/2331216520948390
  33. Blauert J. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge. MIT Press, 1997. 494 p.
  34. Bronkhorst A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics. 2015. V. 77. № 5. P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  35. Brungart D.S., Rabinowitz W.M., Durlach N.I. Auditory localization of a nearby point source. J Acoust Soc Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417577
  36. Brungart D.S. Rabinowitz W.M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 1999. V. 106. P. 1465–1479. https://doi.org/10.1121/1.427180
  37. Butler R.A., Levy E.T., Neff W.D. Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance. 1980. V. 6. № 4. P. 745. https://doi.org/10.1037/0096-1523.6.4.745
  38. Calamia P.T., Hixson E.L. Measurement of the head-related transfer function at close range. J. Acoust. Soc. Am. 1997. V. 102. P. 3117. https://doi.org/10.1121/1.420569
  39. Carlile S., Leung J. The perception of auditory motion. Trends in hearing. 2016. V. 20. P. 2331216516644254. https://doi.org/10.1177/2331216516644254
  40. Catic J., Santurette S., Buchholz J.M., Gran F., Dau T. The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America. 2013. V. 134. № 2. P. 1232–1241. https://doi.org/10.1121/1.4812264
  41. Chabot-Leclerc A., MacDonald E.N., Dau T. Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. The Journal of the Acoustical Society of America. 2016. V. 140. № 1. P. 192–205.
  42. Cochran P., Throop J., Simpson W.E. Estimation of distance of a source of sound. The American journal of psychology. 1968. V. 81. № 2. P. 198–206. https://doi.org/10.2307/1421264
  43. Coleman P.D. Failure to localize the source distance of an unfamiliar sound. J. Acoust. Soc. Am. 1962. V. 34. P. 345–346.
  44. Coleman P.D. An analysis of cues to auditory depth perception in free space. Psychological Bulletin. 1963. V. 60. № 3. P. 302–315. https://doi.org/10.1037/h0045716
  45. Coudert A., Verdelet G., Reilly K.T., Truy E., Gaveau V. Intensive Training of Spatial Hearing Promotes Auditory Abilities of Bilateral Cochlear Implant Adults: A Pilot Study. Ear and Hearing. 2022. https://doi.org/10.1097/AUD.0000000000001256
  46. Duda R.O., Martens W.L. Range dependence of the response of a spherical head model. J. Acoust. Soc. Am. 1998. V. 104. № 5. P. 3048–3058. https://doi.org/10.1121/1.423886
  47. Edwards A.S. Accuracy of auditory depth perception. Journal of General Psychology. 1955. V. 52. P. 327–329. https://doi.org/10.1080/00221309.1955.9920247
  48. Fontana F., Rocchesso D. Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception. 2008. V. 5. № 3. P. 1–15. https://doi.org/10.1145/1402236.1402240
  49. Gardner M.B. Distance Estimation of 0° or Apparent 0° – Oriented Speech Signals in Anechoic Space. J. Acoust. Soc. Am. 1969. V. 45. № 1. P. 47–53. https://doi.org/10.1121/1.1911372
  50. Gordon M.S., Russo F.A., MacDonald E. Spectral information for detection of acoustic time to arrival. Attention Perception & Psychophysics. 2013. V. 75. № 4. P. 738–750. https://doi.org/10.3758/s13414-013-0424-2
  51. Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane. The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
  52. Guo Z., Lu Y., Wang L., Yu G. Discrimination experiment of sound distance perception for a real source in near-field. EAA Spatial Audio Signal Processing Symposium. 2019. P. 85–89. https://doi.org/10.25836/sasp.2019.25
  53. Gvozdeva A.P., Andreeva I.G. The Minimum Audible Movement Distance for Localization of Approaching and Receding Broadband Noise with a Reduced Fraction of High-Frequency Spectral Components Typical of Prebyscusis. Journal of Evolutionary Biochemistry and Physiology. 2019. V. 55. № 6. P. 463–474. https://doi.org/10.1134/S0022093019060048
  54. Hall D.A., Moore D.R. Auditory neuroscience: The salience of looming sounds. Current Biology, 2003. V. 13. № 3. P. R91–R93. https://doi.org/10.1016/s0960-9822(03)00034-4
  55. Hartley R.V.L., Fry T.C. The Binaural Location of Pure Tones. Physical Review. 1921. V. 18. № 6. P. 431. https://doi.org/10.1103/PhysRev.18.431
  56. Hartmann W.M., Wittenberg A. On the externalization of sound images. J. Acoust. Soc. Am. 1996. V. 99. № 6. P. 3678–3688. https://doi.org/10.1121/1.414965
  57. Haustein B.G. Hypothesen über die einohrige Entfernungswahrnehmung des menschlichen Gehörs (Hypotheses about the perception of distance in human hearing with one ear). Hochfrequenztech. u. Elektroakustik. 1969. V. 78. P. 46–57.
  58. Hirsch R.H. Perception of the range of a sound source of unknown strength. J. Acoust. Soc. Am. 1968. V. 43. P. 373–374. https://doi.org/10.1121/1.1910789
  59. Holt R.E., Thurlow W.R. Subject orientation and judgment of distance of a sound source. Acoust. Soc. Am. 1969. V. 46. № 6B. P. 1584–1585. https://doi.org/10.1121/1.1911909
  60. Jenny C., Reuter C. Usability of individualized head-related transfer functions in virtual reality: Empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games. 2020. V. 8. P. e17576. https://doi.org/10.2196/17576
  61. Kearney G., Gorzel M., Rice H., Boland F. Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica. 2012. V. 98. P. 61–71. https://doi.org/10.3813/AAA.918492
  62. Kim H-Y., Suzuki Y., Takane S., Sone T. Control of auditory distance perception based on the auditory parallax model. Applied Acoustics. 2001. V. 62. Is. 3. P. 245–270. https://doi.org/10.1016/S0003-682X(00)00023-2
  63. Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten. Percept. Psychophys. 2016. V. 78. № 2. P. 373–395. https://doi.org/10.3758/s13414-015-1015-1
  64. Kolarik A.J., Raman R., Moore B.C.J., Cirstea S., Gopalakrishnan S., Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports. 2020. V. 10. P. 7169. https://doi.org/10.1038/s41598-020-64306-8
  65. Kopčo N., Shinn-Cunningham B.G. Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America. 2003. V. 114. № 5. P. 2856–2870. https://doi.org/10.1121/1.1616577
  66. Kopčo N., Shinn-Cunningham B.G. Effect of stimulus spectrum on distance perception for nearby sourcesa). Acoust. Soc. Am. 2011. V. 130. № 3. P. 1530–1541 https://doi.org/10.1121/1.3613705
  67. Koroleva I.V., Ogorodnikova E.A. Chapter 30: Modern achievements in cochlear and brainstem auditory implantation. In: Neural Networks and Neurotechnologies (eds: Yu. Shelepin, E. Ogorodnikova, N. Solovyev, E. Yakimova). SPb, Publish by VVM, 2019. P. 231–249.
  68. Lambert R.M. Dynamic theory of sound-source localization. J. Acoust. Soc. Am. 1974. V. 56. P. 165–171. https://doi.org/10.1121/1.1903248
  69. Liu Y., Xie B.S. Auditory discrimination on the distance dependence of near-field head-related transfer function magnitudes. Proc. Mtgs. Acoust. 2013. V. 19. P. 050048. https://doi.org/10.1121/1.4799196
  70. Lounsbury B.F., Butler R.A. Estimation of distances of recorded sounds presented through headphones. Scandinavian audiology. 1979. V. 8. № 3. P. 145–149. https://doi.org/10.3109/01050397909076315
  71. Lundbeck M., Grimm G., Hohmann V., Laugesen S., Neher T. Sensitivity to angular and radial source movements as a function of acoustic complexity in normal and impaired hearing. Trends in hearing. 2017. V. 21. P. 2331216517717152. https://doi.org/10.1177/2331216517717152
  72. Marrone N., Mason C.R., Kidd Jr.G. The effects of hearing loss and age on the benefit of spatial separation between multiple talkers in reverberant rooms. The Journal of the Acoustical Society of America. 2008. V. 124. № 5. P. 3064–3075. https://doi.org/10.1121/1.2980441
  73. McAnally K.I., Martin R.L. Sound localization with head movement: Implications for 3-d audio displays. Front. Neurosci. 2014. V. 8. P. 1–6. https://doi.org/10.3389/fnins.2014.00210
  74. Mershon D.H., Bowers J.N. Absolute and relative cues for the auditory perception of egocentric distance. Perception. 1979. V. 8. № 3. P. 311–322. https://doi.org/10.1068/p080311
  75. Mershon D.H., King L.E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Perception & Psychophysics. 1975. V. 18. № 6. P. 409–415. https://doi.org/10.3758/BF03204113
  76. Mershon D.H., Ballenger W.L., Little A.D., McMurtry P.L., Buchanan J.L. Effects of room reflectance and background noise on perceived auditory distance. Perception. 1989. V. 18. № 3. P. 403–416. https://doi.org/10.1068/p180403
  77. Middlebrooks J.C. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J. Acoust. Soc. Am. 1999. V. 106. P. 1493–1510 https://doi.org/10.1121/1.427147
  78. Middlebrooks J.C. Sound localization. Handbook of clinical neurology. 2015. V. 129. P. 99–116. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  79. Middlebrooks J.C., Green D.M. Sound localization by human listeners. Annual review of psychology. 1991. V. 42. № 1. P. 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
  80. Molino J. Perceiving the Range of a Sound Source When the Direction is Known. J. Acoust. Soc. Am. 1973. V. 53. P. 1301–1304. https://doi.org/10.1121/1.1913469
  81. Møller H., Sørensen M.F., Hammershøi D., Jensen C.B. Head-Related Transfer Functions of Human Subjects. J. Audio Eng. Soc. 1995. V. 43. P. 300–321.
  82. Moore B.C.J. An Introduction to the Psychology of Hearing. Leiden. Brill. 2012. 442 p.
  83. Moore D.R., King A.J. Auditory perception: The near and far of sound localization. Current Biology. 1999. V. 9. № 10. P. R361–R363. https://doi.org/10.1016/S0960-9822(99)80227-9
  84. Naguib M., Wiley R.H. Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal behavior. 2001. V. 62. № 5. P. 825–837. https://doi.org/10.1006/anbe.2001.1860
  85. Neuhoff J.G. Perceptual bias for rising tones. Nature. 1998. V. 395. № 6698. P. 123–124. https://doi.org/10.1038/25862
  86. Oberem J., Richter J.G., Setzer D., Seibold J., Koch I., Fels. J. Experiments on localization accuracy with non-individual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv. 2020. P. 1–11. https://doi.org/10.1101/2020.03.31.011650
  87. Otani M., Hirahara T., Ise S. Numerical study on source-distance dependency of head-related transfer functions. The Journal of the Acoustical Society of America. 2009. V. 125. № 5. P. 3253–3261. https://doi.org/10.1121/1.3111860
  88. Parseihian G., Jouffrais C., Katz B.F. Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience. 2014. V. 8. P. 269. https://doi.org/10.3389/fnins.2014.00269
  89. Pelzer R., Dinakaran M., Brinkmann F., Lepa, S., Grosche P., Weinzierl S. Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am. 2020. V. 148. P. 3809–3817 https://doi.org/10.1121/10.0002884
  90. Perrott D.R., Ambarsoom H., Tucker J. Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J. Acoust. Soc. Am. 1987. V. 82. № 5. P. 1637. https://doi.org/10.1121/1.395155
  91. Perrott D.R., Costantino B., Cisneros J. Auditory and visual localization performance in a sequential discrimination task. The Journal of the Acoustical Society of America. 1993. V. 93. № 4. P. 2134–2138. https://doi.org/10.1121/1.406675
  92. Petersen J. Estimation of loudness and apparent distance of pure tones in a free field. Acta Acustica united with Acustica. 1990. V. 70. № 1. P. 61–65.
  93. Risoud M., Hanson J.N., Gauvrit F., Renard C., Lemesre P.E., Bonne N.X., Vincent C. Sound source localization. European annals of otorhinolaryngology, head and neck diseases. 2018. V. 135. № 4. P. 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
  94. Rosenblum L.D., Carello C., Pastore R.E. Relative effectiveness of three stimulus variables for locating a moving sound source. Perception. 1987. V. 16. № 2. P. 175–186. https://doi.org/10.1068/p160175
  95. Rummukainen O.S., Robotham T., Habets E.A. Head-Related Transfer Functions for Dynamic Listeners in Virtual Reality. Applied Sciences. 2021. V. 11. № 14. P. 6646. https://doi.org/10.3390/app11146646
  96. Russell M.K. Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. Front. Psychol. 2022. V. 13. P. 831670. https://doi.org/10.3389/fpsyg.2022.831670
  97. Saberi K., Perrott D.R. Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. Journal of the Acoustical Society of America. 1990. V. 87. P. 1732–1737. https://doi.org/10.1121/1.399422
  98. Seifritz E., Neuhoff J.G., Bilecen D., Scheffler K., Mustovic H. Neural processing of auditory looming in the human brain. Current Biology. 2002. V. 12. P. 2147–2151. https://doi.org/10.1016/S0960-9822(02)01356-8
  99. Shinn-Cunningham B.G., Santarelli S., Kopco N. Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America. 2000. V. 107. № 3. P. 1627–1636. https://doi.org/10.1121/1.428447
  100. Shinn-Cunningham B.G., Streeter T., Gyss J.F. Perceptual plasticity in spatial auditory displays. ACM Transactions on Applied Perception (TAP). 2005. V. 2. № 4. P. 418–425. https://doi.org/10.1145/1101530.1101536
  101. Simpson W.E., Stanton L.D. Head movement does not facilitate perception of the distance of a source of sound. The American journal of psychology. 1973. V. 86. № 1. P. 151–159. https://doi.org/10.2307/1421856
  102. Stevens S.S., Guirao M. Loudness, reciprocality, and partition scales. Acoust. Soc. Am. 1962. V. 34. № 9B. P. 1466–1471. https://doi.org/10.1121/1.1918370
  103. Strybel T.Z., Perrott D.R. Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. J. Acoust. Soc. Am. 1984. V. 76. № 1. P. 318–320. https://doi.org/10.1121/1.391064
  104. Strybel T.Z., Manligas C.L., Perrott D.R. Auditory apparent motion under binaural and monaural listening conditions. Perception & Psychophysics. 1989. V. 45. № 4. P. 371–377. https://doi.org/10.3758/BF03204951
  105. Strybel T.Z., Manligas C.L., Chan O., Perrott D.R. A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities. Perception & Psychophysics. 1990. V. 47. № 5. P. 439–448. https://doi.org/10.3758/BF03208177
  106. Strybel T.Z., Manllgas C.L., Perrott D.R. Minimum audible movement angle as a function of the azimuth and elevation of the source. Human factors. 1992. V. 34. № 3. P. 267–275. https://doi.org/10.1177/001872089203400302
  107. Vartanyan I.A., Andreeva I.G. A psychophysiological study of auditory illusions of approach and withdrawal in the context of the perceptual environment. The Spanish journal of psychology. 2007. V. 10. № 2. P. 266–276. https://doi.org/10.1017/S1138741600006533
  108. von Békésy G. The moon illusion and similar auditory phenomena. The American journal of psychology. 1949. V. 62. № 4. P. 540–552. https://doi.org/10.2307/1418558
  109. Warren R.M. Auditory perception: A new analysis and synthesis. Cambridge, UK. Cambridge University Press, 1999. 241 p.
  110. Wenzel E.M., Arruda M., Kistler D.J., Wightman F.L. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am. 1993. V. 94. P. 111–23. https://doi.org/10.1121/1.407089
  111. Westermann A., Buchholz J.M. Release from masking through spatial separation in distance in hearing impaired listeners. In: Proceedings of Meetings on Acoustics ICA2013. Acoustical Society of America. 2013. V. 19. № 1. P. 050156. https://doi.org/10.1121/1.4906581
  112. Wightman E.R., Firestone F.A. Binaural localization of pure tones. The Journal of the Acoustical Society of America. 1930. V. 2. № 2. P. 271–280. https://doi.org/10.1121/1.1915255
  113. Yu G., Wang L. Effect of Individualized Head-Related Transfer Functions on Distance Perception in Virtual Reproduction for a Nearby Sound Source. Archives of Acoustics. 2019. V. 44. № 2. P. 251–258. https://doi.org/10.24425/aoa.2019.128488
  114. Zahorik P. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc. Am. 2002. V. 111. P. 1832–1846. https://doi.org/10.1121/1.1458027
  115. Zahorik P., Wightman F.L. Loudness constancy with varying sound source distance. Nature Neuroscience. 2001. V. 4. P. 78–83. https://doi.org/10.1038/82931
  116. Zahorik P., Brungart D.S., Bronkhorst A.W. Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica. 2005. V. 91. № 3. P. 409–420.
  117. Zhang M., Qiao Y., Wu X., Qu T. Distance-dependent Modeling of Head-related Transfer Functions. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 276–280. https://doi.org/10.1109/ICASSP.2019.8683756
  118. Zhong X.L., Xie B.S. Head-related transfer functions and virtual auditory display. In: Soundscape Semiotics-Localization and Categorization. 2014. https://doi.org/10.5772/56907

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (74KB)
3.

Скачать (137KB)

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах