Декомпенсированный цирроз печени нарушает деформируемость эритроцитов и их способность проходить микроканалы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Эритроциты являются самой многочисленной клеточной популяцией крови, обеспечивающей необходимый уровень оксигенации тканей, и формирующей упорядоченное движение всех клеток крови по сосудам. Нарушения физиологической деформируемости эритроцитов усугубляют степень анемии по двум направлениям: аберрантные эритроциты быстро элиминируютcя из кровотока за счет секвестрации и разрушения в селезенке и печени, и плохо деформируемые эритроциты имеют сниженный потенциал для газообмена в капиллярах из-за уменьшения площади контакта мембраны. Независимо от этиологии гепатоза, цирроз печени (ЦП) сопровождается развитием стойкой анемии, однако нарушения деформируемости эритроцитов у больных декомпенсированным циррозом печени мало исследованы. С использованием методов лазерной дифракции, проточной цитометрии и микрофлюидного анализа мы показали, что эритроциты больных ЦП имеют существенные нарушения деформируемости, обусловленные стрессовым типом эритропоэза (выход в циркуляцию незрелых ретикулоцитов, повышение доли фосфатидилсерин-презентирующих эритроцитов, снижение активности цитозольных эстераз). При ЦП эритроциты имеют сильно выраженную ригидность к гипоосмотической нагрузке: индуцированный гемолиз имеет незавершенный характер, снижена его скорость, что свидетельствует о нарушении деформируемости. Нарушения влияли на способность эритроцитов проходить микроканалы, снижалась скорость транзита, наблюдался высокий процент окклюзий, т.е. были выявлены признаки нарушения микрореологии. Установлена связь нарушений микрореологии эритроцитов в зависимости от степени прогрессирования ЦП.

Об авторах

Е. А. Скверчинская

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: lisarafail@mail.ru
Санкт-Петербург, 194223 Россия

О. И. Филиппова

Городская больница № 26

Санкт-Петербург, 196247 Россия

С. П. Гамбарян

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Санкт-Петербург, 194223 Россия

А. С. Букатин

Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алферова; Институт аналитического приборостроения РАН

Санкт-Петербург, 194021 Россия; Санкт-Петербург, 198095 Россия

А. В. Колосков

Городская больница № 26

Санкт-Петербург, 196247 Россия

И. В. Миндукшев

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Санкт-Петербург, 194223 Россия

Список литературы

  1. Hua R., Cao H., Wu Z.Y. 2006. Effects of hemoglobin concentration on hyperdynamic circulation associated with portal hypertension. Hepatobiliary Pancreat Dis. Int. 5 (2), 215–218.
  2. Güngör G., Akyıldız M., Keskin M., Solak Y., Gaipov A., Bıyık M., Çifçi S., Ataseven H., Polat H., Demir A. 2016. Is there any potential or additive effect of anemia on hepatorenal syndrome? Turk. J. Gastroenterol. 27 (3), 273–278.
  3. Scheiner B., Semmler G., Maurer F., Schwabl P., Bucsics T.A., Paternostro R., Bauer D., Simbrunner B., Trauner M., Mandorfer M., Reiberger T. 2020. Prevalence of and risk factors for anaemia in patients with advanced chronic liver disease. Liver Int. 40 (1), 194–204.
  4. Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. 2018. Squeezing for life - properties of red blood cell deformability. Front. Physiol. 9, 656.
  5. Cabrales P. 2007. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Am. J. Physiol. Heart Circ. Physiol. 293 (2), H1206-H1215.
  6. Weisel J.W., Litvinov R.I. Red blood cells: The forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019. 17 (2), 271–282.
  7. Owen J.S., Bruckdorfer K.R., Day R.C., McIntyre N. 1982. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J. Lipid Res. 23 (1), 124–132.
  8. Shiraishi K., Matsuzaki S., Ishida H., Nakazawa H. 1993. Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: Participation in disturbed hepatic microcirculation. Alcohol Alcohol. Suppl. 1A, 59–64.
  9. Beaugé F., Niel E., Hispard E., Perrotin R., Thepot V., Boynard M., Nalpas B. 1994. Red blood cell deformability and alcohol dependence in humans. Alcohol Alcohol. 29 (1), 59–63.
  10. Oonishi T., Sakashita K. 2000. Ethanol improves decreased filterability of human red blood cells through modulation of intracellular signaling pathways. Alcohol Clin. Exp. Res. 24 (3), 352–356.
  11. Otoyama I., Hamada H., Kimura T., Namba H., Sekikawa K., Kamikawa N., Kajiwara T., Aizawa F., Sato Y.M. 2019. L-cysteine improves blood fluidity impaired by acetaldehyde: In vitro evaluation. PLoS One. 14 (3), e0214585.
  12. Sudnitsyna J., Skverchinskaya E., Dobrylko I., Nikitina E., Gambaryan S., Mindukshev I. 2020. Microvesicle formation induced by oxidative stress in human erythrocytes. Antioxidants (Basel). 9 (10), 929.
  13. Sudnitsyna J.S., Skverchinskaya E.A., Zubina I.M., Suglobova E.D., Vlasov T.D., Smirnov A.V., Vasiliev A.N., Ruzhnikova T.O., Kaljuzhnyi B.A., Mindukshev I.V., Borisov Y.A. 2022. Alterations in erythrocyte deformability and functions associated with end-stage renal disease. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 16 (1), 79–90.
  14. Skverchinskaya E., Levdarovich N., Ivanov A., Mindukshev I., Bukatin A. 2023. Anticancer drugs paclitaxel, carboplatin, doxorubicin, and cyclophosphamide alter the biophysical characteristics of red blood cells, in vitro. Biology (Basel). 12 (2), 230.
  15. Mikhailova D.M., Skverchinskaya E., Sudnitsyna J., Butov K.R., Koltsova E.M., Mindukshev I.V., Gambaryan S. 2024. Hematin- and hemin-induced spherization and hemolysis of human erythrocytes are independent of extracellular calcium concentration. Cells. 13 (6), 554.
  16. Sudnitsyna J., Ruzhnikova T.O., Panteleev M.A., Kharazova A., Gambaryan S., Mindukshev I.V. 2024. Chloride gradient is involved in ammonium influx in human erythrocytes. Int. J. Mol. Sci. 25 (13), 7390.
  17. Boas L.V., Faustino V., Lima R., Miranda J.M., Minas G., Fernandes C.S.V., Catarino S.O. 2018. Assessment of the deformability and velocity of healthy and artificially impaired red blood cells in narrow polydimethylsiloxane (PDMS) microchannels. Micromachines (Basel). 9(8), 384.
  18. Jeong J.H., Sugii Y., Minamiyama M., Okamoto K. 2006. Measurement of RBC deformation and velocity in capillaries in vivo. Microvasc. Res. 71 (3), 212–217.
  19. Man Y., Kucukal E., An R., Watson Q.D., Bosch J., Zimmerman P.A., Little J.A., Gurkan U.A. 2020. Microfluidic assessment of red blood cell mediated microvascular occlusion. Lab. Chip. 20 (12), 2086–2099.
  20. Man Y., An R., Monchamp K., Sekyonda Z., Kucukal E., Federici C., Wulftange W.J., Goreke U., Bode A., Sheehan V.A., Gurkan U.A. 2022. OcclusionChip: A functional microcapillary occlusion assay complementary to ektacytometry for detection of small-fraction red blood cells with abnormal deformability. Front. Physiol. 13, 954106.
  21. Ивашкин В.Т., Маевская М.В., Жаркова М.С., Жигалова С.Б., Киценко Е.А., Манукьян Г.В., Трухманов А.С., Маев И.В., Тихонов И.Н., Деева Т.А. 2021. Клинические рекомендации Российского общества по изучению печени и Российской гастроэнтерологической ассоциации по диагностике и лечению фиброза и цирроза печени и их осложнений. Рос. журн. гастроэнтерол. гепатол. колопроктол. 31 (6), 56–102.
  22. An X., Guo X., Sum H., Morrow J., Gratzer W., Mohandas N. 2004. Phosphatidylserine binding sites in erythroid spectrin: Location and implications for membrane stability. Biochemistry. 43 (2), 310–315.
  23. Kienast J., Schmitz G. 1990. Flow cytometric analysis of thiazole orange uptake by platelets: a diagnostic aid in the evaluation of thrombocytopenic disorders. Blood. 75 (1), 116–121.
  24. Riley R.S., Ben-Ezra J.M., Tidwell A., Romagnoli G. 2002. Reticulocyte analysis by flow cytometry and other techniques. Hematol. Oncol. Clin. North. Am. 16 (2), 373–420.
  25. Mindukshev I., Gambaryan S., Kehrer L., Schuetz C., Kobsar A., Rukoyatkina N., Nikolaev V.O., Krivchenko A., Watson S.P., Walter U., Geiger J. 2012. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clin. Chem. Lab. Med. 50 (7), 1253–1262.
  26. Gerda B.A., Skverchinskaya E.A., Andreeva A.Y., Volkova A.A., Gambaryan S., Mindukshev I.V. 2024. A comparative analysis of erythrocyte osmotic fragility across Vertebrate Taxa. J. Evol. Biochem. Physiol. 60 (4), 1363–1384.
  27. Besedina N.A., Skverchinskaya E.A., Shmakov S.V., Ivanov A.S., Mindukshev I.V., Bukatin A.S. 2022. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun. Biol. 5 (1), 659.
  28. Bukatin A.S., Mukhin I.S., Malyshev E.I., Kukhtevich I.V., Evstrapov A.A., Dubina M.V. 2016. Fabrication of high-aspect-ratio microstructures in polymer microfluid chips for in vitro single-cell analysis. Technical. Physics. 61 (10), 1566–1571.
  29. Левдарович Н.А. Гречаная Ю.С., Иванов А.С., Грязнова М.О., Скверчинская Е.А., Миндукшев И.В., Букатин А.С. 2024. Разработка и оптимизация микрофлюидного устройства для исследования эритроцитов лабораторных животных. Научное приборостроение, 34 (2), 77–94.
  30. Kamath P.S., Wiesner R.H., Malinchoc M., Kremers W., Therneau T.M., Kosberg C.L., D'Amico G., Dickson E.R., Kim W.R. 2001. A model to predict survival in patients with end-stage liver disease. Hepatology. 33 (2), 464–470.
  31. Singal A.K., Kamath P.S. 2013. Model for end-stage liver disease. J. Clin. Exp. Hepatol. 3 (1), 50–60.
  32. Leithead J.A., MacKenzie S.M., Ferguson J.W., Hayes P.C. 2011. Is estimated glomerular filtration rate superior to serum creatinine in predicting mortality on the waiting list for liver transplantation? Transpl. Int. 24 (5), 482–488.
  33. Walsh S.R., Cook E.J., Goulder F., Justin T.A., Keeling N.J. 2005. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol. 91 (3), 181–184.
  34. Piva E., Brugnara C., Chiandetti L., Plebani M. 2010. Automated reticulocyte counting: State of the art and clinical applications in the evaluation of erythropoiesis. Clin. Chem. Lab. Med. 48 (10), 1369–1380.
  35. Canals C., Remacha A.F., Sardá M.P., Piazuelo J.M., Royo M.T., Romero M.A. 2005. Clinical utility of the new Sysmex XE 2100 parameter - reticulocyte hemoglobin equivalent - in the diagnosis of anemia. Haematologica. 90 (8), 1133–1134.
  36. Sah A.K., Rao D.S. 2024. Clinical Significance of Reticulocytes. In: Red Blood Cells - Properties and Functions. Eds Rajashekaraiah V. IntechOpen: Rijeka.
  37. Bracho F.J., Osorio I.A. 2020. Evaluation of the reticulocyte production index in the pediatric population. Am. J. Clin. Pathol. 154 (1), 70–77.
  38. Ovchynnikova E., Aglialoro F., von Lindern M., van den Akker E. 2018. The shape shifting story of reticulocyte maturation. Front. Physiol. 9, 829.
  39. Simó M., Santaolaria M., Murado J., Pérez M.L., Corella D., Vayá A. 2007. Erythrocyte deformability in anaemic patients with reticulocytosis determined by means of ektacytometry techniques. Clin. Hemorheol. Microcirc. 37 (3), 263–267.
  40. Ruan B., Paulson R.F. 2023. Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Front. Physiol. 13, 1063294. doi: 10.3389/fphys.2022.1063294
  41. Bissinger R., Bhuyan A.A.M., Qadri S.M., Lang F. 2019. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 286 (5), 826–854.
  42. Kuypers F.A., de Jong K. 2004. The role of phosphatidylserine in recognition and removal of erythrocytes. Cell Mol. Biol. (Noisy-le-grand). 50 (2), 147–158.
  43. Fens M.H., van Wijk R., Andringa G., van Rooijen K.L., Dijstelbloem H.M., Rasmussen J.T.,. de Vooght K.M, Schiffelers R.M., Gaillard C.A., van Solinge W.W. 2012. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica. 97 (4), 500–508.
  44. Closse C., Dachary-Prigent J., Boisseau M.R. 1999. Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br. J. Haematol. 107 (2), 300–302.
  45. Manno S., Mohandas N., Takakuwa Y. 2010. ATP-dependent mechanism protects spectrin against glycation in human erythrocytes. J. Biol. Chem. 285 (44), 33923–3929.
  46. Rozenszajn, L., Leibovich M., Shoham D., Epstein J. 1968. The esterase activity in megaloblasts, leukaemic and normal haemopoietic cells. Br. J. Haematol. 14 (6), 605–610.
  47. Arashiki N., Kimata N., Manno S., Mohandas N., Takakuwa Y. 2013. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry. 52 (34), 5760–5769.
  48. Goodman S.R., Daescu O., Kakhniashvili D.G., Zivanic M. 2013. The proteomics and interactomics of human erythrocytes. Exp. Biol. Med. (Maywood). 238 (5), 509–518.
  49. Szabo G., Momen-Heravi F. 2017. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 14 (8), 455–466.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».