The potential for using the mechanism of hypoxic adaptation in lower eukaryotes
- Authors: Zorov D.B.1,2, Zorova L.D.1,2, Babenko V.A.1,2, Semenovich D.S.1,2, Ivanova A.E.2, Zorov S.D.1, Pevzner I.B.1,2, Plotnikov E.Y.1,2, Silachev D.N.1,2, Sukhikh G.T.2
-
Affiliations:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
- Issue: Vol 42, No 4 (2025)
- Pages: 255-263
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0233-4755/article/view/351627
- DOI: https://doi.org/10.31857/S0233475525040011
- ID: 351627
Cite item
Abstract
Keywords
About the authors
D. B. Zorov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
Email: zorov@belozersky.msu.ru
Moscow, 119991 Russia; Moscow, 117997 Russia
L. D. Zorova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
V. A. Babenko
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
D. S. Semenovich
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
A. E. Ivanova
Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 117997 Russia
S. D. Zorov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, 119991 Russia
I. B. Pevzner
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
E. Yu. Plotnikov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
D. N. Silachev
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 119991 Russia; Moscow, 117997 Russia
G. T. Sukhikh
Kulakov National Medical Research Center of Obstetrics, Gynecology and PerinatologyMoscow, 117997 Russia
References
- Margulis L., Sagan D. 1986. The Oxygen Holocaust. In: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. California: University of California Press, p. 99–114.
- Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950.
- Zorov D.B., Bannikova S.Y., Belousov V.V., Vyssokikh M.Y., Zorova L.D., Isaev N.K., Krasnikov B.F., Plotnikov E.Y. 2015. Reactive oxygen and nitrogen species: Friends or foes? Biochemistry (Mosc).70 (2), 215–221.
- Zorov D.B., Isaev N.K., Plotnikov EY., Zorova L.D., Stelmashook E.V., Vasileva A.K., Arkhangelskaya A.A., Khrjapenkova T.G. 2007. The mitochondrion as janus bifrons. Biochemistry (Mosc). 72 (10), 1115–1126.
- Plotnikov E.Y., Vasileva A.K., Arkhangelskaya A.A., Pevzner I.B., Skulachev V.P., Zorov D.B. 2008. Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: Protective effects of SkQ1, lithium ions and insulin. FEBS Lett. 582 (20), 3117–3124.
- Ito K., Nioka S., Chance B. 1990. Oxygen dependence of energy state and cardiac work in the perfused rat heart. Adv. Exp. Med. Biol. 277, 449–457.
- Chandel N.S., Budinger G.R., Choe S.H., Schumacker P.T. 1997. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272 (30), 18808–18816.
- Korshunov S.S., Skulachev V.P., Starkov A.A. 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1), 15–18.
- Starkov A.A., Fiskum G. 2003. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 86 (5), 1101–1107.
- Krogh A. 1919. The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol. 52, 457–474.
- Chance B., Williams G.R. 1955. Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J. Biol. Chem. 217 (1), 429–438.
- Chance B., Cohen P., Jobsis F., Schoener B. 1962. Intracellular oxidation-reduction states in vivo. Science. 137 (3529), 499–508.
- Degn H., Wohlrab H. 1971. Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions. A new technique. Biochim. Biophys. Acta. 245, 347–355.
- Rosenthal M., Lamanna J.C., Jöbsis F.F., Levasseur J.E., Kontos H.A., Patterson J.L. 1976. Effects of respiratory gases on cytochrome A in intact cerebral cortex: is there a critical Po2? Brain Res. 108 (1), 143–154.
- Jöbsis F.F., Keizer J.H., LaManna J.C., Rosenthal M. 1977. Reflectance spectrophotometry of cytochrome aa3 in vivo. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 43 (5), 858–872.
- Bashford C.L., Barlow C.H., Chance B., Haselgrove J., Sorge J. 1982. Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am. J. Physiol. 242 (5), C265–271.
- Zorov D.B., Krasnikov B.F., Kuzminova A.E., Vysokikh M.Yu., Zorova L.D. 1997. Mitochondria revisited. Alternative functions of mitochondria. Biosci. Rep. 17 (6), 507–520.
- Burmeste T. 2002. Origin and evolution of arthropod hemocyanins and related proteins. J. Comp. Physiol. [B]. 172, 95–107.
- Kurtz D.M. Jr. 1999. Oxygen-carrying proteins: Three solutions to a common problem. Essays Biochem. 34, 85–100.
- Burmester T., Hankeln T. 2014. Function and evolution of vertebrate globins. Acta Physiol. (Oxf). 211 (3), 501–514.
- Van Hellemond J.J., Klockiewicz M., Gaasenbeek C.P., Roos M.H., Tielens A.G. 1995. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J. Biol. Chem. 270 (52), 31065–31070.
- Kita K., Hirawake H., Miyadera H., Amino H., Takeo S. 2002. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim. Biophys. Acta. 553 (1–2), 123–139.
- Sakai C., Tomitsuka E., Esumi H., Harada S., Kita K. 2012. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim. Biophys. Acta. 1820 (5), 643–651.
- Valeros J., Jerome M., Tseyang T., Vo P., Do T., Palomino D.F., Grotehans N., Kunala M., Jerrett A.E., Hathiramani N.R., Mireku M, Magesh R.Y., Yenilmez B., Rosen P.C., Mann J.L., Myers J.W., Kunchok T., Manning T.L., Boercker L.N., Carr P.E., Munim M.B., Lewis C.A., Sabatini D.M., Kelly M., Xie J., Czech M.P., Gao G., Shepherd J.N., Walker A.K., Kim H., Watson E.V., Spinelli J.B. 2025. Rhodoquinone carries electrons in the mammalian electron transport chain. Cell. 188, 1084–1099.
- Ryan D.G., Murphy M.P., Frezza C., Prag H.A., Chouchani E.T., O’Neill L.A., Mills E.L. 2018. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1, 16–33.
- Bisbach C.M., Hass D.T., Robbings B.M., Rountree A.M., Sadilek M., Sweet I.R., Hurley J.B. 2020. Succinate can shuttle reducing power from the hypoxic retina to the O2-rich pigment epithelium. Cell Rep. 31, 107606.
- Reddy A., Bozi L.H.M., Yaghi O.K., Mills E.L., Xiao H., Nicholson H.E., Paschini M., Paulo J.A., Garrity R., Laznik-Bogoslavski D. et al. 2020. pH-Gated succinate secretion regulates muscle remodeling in response to exercise. Cell. 183, 62–75.e17.
- Toma I., Kang J.J., Sipos A., Vargas S., Bansal E., Hanner, F., Meer E., Peti-Peterdi J. 2008. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Investig. 118, 2526–2534.
- Wu K.K. 2023. Extracellular succinate: A physiological messenger and a pathological trigger. Int. J. Mol. Sci. 24, 11165.
- Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7, 77–85.
- Michelucci A., Cordes T., Ghelfi J., Pailot A., Reiling N., Goldmann O., Binz T., Wegner A., Tallam A., Rausell A. et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA. 110, 7820–7825.
- Jha A.K., Huang S.C.-C., Sergushichev A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K.M., Ashall J., Everts B. et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 42, 419–430.
- Li Z., Zheng W., Kong W., Zeng T. 2023. T. Itaconate: A potent macrophage immunomodulator. Inflammation. 46, 1177–1191.
- De Souza D.P., Achuthan A., Lee M.K.S., Binger K.J., Lee M.C., Davidson S., Tull D.L., McConville M.J., Cook A.D., Murphy A.J. et al. 2019. Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. J. Clin. Investig. 129, 4239–4244.
- Anderson N.M., Simon M.C. 2020. The tumor microenvironment. Curr. Biol. 30, R921–R925.
- Weiss J.M., Davies L.C., Karwan M., Ileva L., Ozaki M.K., Cheng R.Y.S., Ridnour L.A., Annunziata C.M., Wink D.A., McVicar D.W. 2018. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Investig. 128, 3794–3805.
- Hansford R.G., Hogue B.A., Mildaziene V. 1997. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29 (1), 89–95. https://doi.org/10.1023/a:1022420007908
- Klingenberg M., Slenczka W. 1959. Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships. Biochem. Z. 331, 486–517.
- Ernster L., Lee C.P. Energy-linked reduction of NAD+ by succinate. 1967. Methods Enzymol. 10, 729–738
- Stepanova A., Kahl A., Konrad C., Ten V., Starkov A.S., Galkin A. 2017. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury. J. Cereb. Blood Flow Metab. 37, 3649–3658.
- Szatrowski T.P., Nathan C.F. 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51 (3), 794–798.
- Lloyd G.M. 1986. Energy metabolism and its regulation in the adult liver fluke Fasciola hepatica. Parasitology. 93 (1), 217–248. https://doi.org/10.1017/s0031182000049957
- Saz H.J. 1970. Comparative energy metabolisms of some parasitic helminths. 1970. J. Parasitol. 56 (4), 634–642.
- Bryant C. 1970. Electron transport in parasitic helminths and protozoa. Adv. Parasitol. 8, 139–172.
- Tomitsuka E., Kita K., Esumi H. 2010. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann. N. Y. Acad. Sci. 1201, 44–49.
- Kita K., Nihei C., Tomitsuka E. 2003. Parasite mitochondria as drug target: Diversity and dynamic changes during the life cycle. Curr. Med .Chem. 10 (23), 2535–2548.
- Van Hellemond J.J., van der Klei A, van Weelden S.W., Tielens A.G. 2003. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358 (1429), 205–215.
- Rustin P., Munnich A., Rötig A. 2002. Succinate dehydrogenase and human diseases: New insights into a well-known enzyme. Eur. J. Hum. Genet. 10 (5), 289–291.
- Ge Z. Potential of fumarate reductase as a novel therapeutic target in Helicobacter pylori infection. 2002. Expert. Opin. Ther. Targets. 6 (2), 135–146.
- Kita K., Takamiya S. Electron-transfer complexes in Ascaris mitochondria. 2002. Adv. Parasitol. 51, 95–131.
- Gibson T.E. The value of pharmacological studies in the development of new antinematodal drugs. 1971. J. Parasitol. 57 (4), 100–103.
- Zorova L.D., Abramicheva P.A., Andrianova N.V., Babenko V.A., Zorov S.D., Pevzner I.B., Popkov V.A., Semenovich D.S., Yakupova E.I., Silachev D.N., Plotnikov E.Y., Sukhikh G.T., Zorov D.B. 2024. Targeting mitochondria for cancer treatment. Pharmaceutics. 16 (4), 444.
- Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 92, 5510–5514.
- Weidemann A., Johnson R.S. 2008. Biology of HIF-1alpha. Cell Death Differ. 2008. 15 (4), 621–627.
- Maxwell P.H., Pugh C.W., Ratcliffe P.J. 2001. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev. 11, 293–299.
- Treinin M., Shliar J., Jiang H., Powell-Coffman J.A., Bromberg Z., Horowitz M. 2003. HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol. Genomics. 2003. 14 (1), 17–24.
- Lee J., Lee J. 2013. Hypoxia-inducible Factor-1 (HIF-1)-independent hypoxia response of the small heat shock protein hsp-16.1 gene regulated by chromatin-remodeling factors in the nematode Caenorhabditis elegans. J. Biol. Chem. 288 (3), 1582–1589.
- Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., McGettrick A.F., Goel G., Frezza C., Bernard N.J., Kelly B., Foley N.H., Zheng L., Gardet A., Tong Z., Jany S.S., Corr S.C., Haneklaus M., Caffrey B.E., Pierce K., Walmsley S., Beasley F.C., Cummins E., Nizet V., Whyte M., Taylor C.T., Lin H., Masters S.L., Gottlieb E., Kelly V.P., Clish C., Auron P.E., Xavier R.J., O'Neill L.A. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496 (7444), 238–242.
- Lukyanova L.D., Kirova Y.I., Germanova E.L. 2018 The role of succinate in regulation of immediate HIF-1α expression in hypoxia. Bull. Exp. Biol. Med. 164 (3), 298–303.
- Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7 (1), 77–85.
- Liu L., Tang W., Wu S., Ma J., Wei K. 2024. Pulmonary succinate receptor 1 elevation in high-fat diet mice exacerbates lipopolysaccharides-induced acute lung injury via sensing succinate. Biochim. Biophys. Acta Mol. Basis Dis. 1870 (5), 167119.
Supplementary files


