Analysis of Molecular Mechanisms of Chronic Irradiation Effects on Electrical Signals in Wheat Plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of ionizing radiation (IR) on plants is mainly realized by altering the status of signaling systems and modifying stress signals. Variation potential (VP) is one of the types of electrical signals in plants. IR contributes to an increase in the amplitude of the VP, but the mechanisms of such influence are practically unknown. A possible way to implement changes arising from the action of IR is the regulation of gene expression. In the present work, the changes in the gene expression of participants in the generation and propagation of VP in irradiated plants are investigated. The experiments were performed on 14–15-day-old soft wheat plants (Triticum aestivum L.) grown under chronic irradiation (source 90Sr-90Y) with a dose rate of 31.3 μGy/h. The maximum accumulated dose was about 11.3 mGy. The irradiated plants showed no changes in the expression of calcium (TPC1), anionic (ALMT1 and CLC1), potassium (AKT1) channels, H+-ATPase (HA1), and NADPH oxidase (RBOHs) genes. A decrease in the expression of the SKOR potassium channel gene was revealed. The potassium channel blocker, tetraethylammonium chloride, caused an increase in response amplitude in control plants comparable to the increase in amplitude in the irradiated group. The obtained results indicate that one of the ways IR influences the electrical signals of plants is to inhibit the expression of the potassium channel.

Full Text

Restricted Access

About the authors

P. A. Pirogova

National Research Lobachevsky State University of Nizhny Novgorod

Email: v.vodeneev@mail.ru
Russian Federation, Nizhny Novgorod, 603022

T. A. Zdobnova

National Research Lobachevsky State University of Nizhny Novgorod

Email: v.vodeneev@mail.ru
Russian Federation, Nizhny Novgorod, 603022

A. V. Ivanova

National Research Lobachevsky State University of Nizhny Novgorod

Email: v.vodeneev@mail.ru
Russian Federation, Nizhny Novgorod, 603022

M. A. Grinberg

National Research Lobachevsky State University of Nizhny Novgorod

Email: v.vodeneev@mail.ru
Russian Federation, Nizhny Novgorod, 603022

V. A. Vodeneev

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: v.vodeneev@mail.ru
Russian Federation, Nizhny Novgorod, 603022

References

  1. Mousseau T.A., Møller A.P. 2020. Plants in the light of ionizing radiation: What have we learned from Chernobyl, Fukushima, and other “hot” places? Front. Plant Sci. 11, 552.
  2. Wang J., Zhang Y., Zhou L., Yang F., Li J., Du Y., Liu R., Li W., Yu L. 2022. Ionizing radiation: Effective physical agents for economic crop seed priming and the underlying physiological mechanisms. Int. J. Mol. Sci. 23 (23), 15212.
  3. Duarte G.T., Volkova P.Y., Perez F., Horemans N. 2023. Chronic ionizing radiation of plants: An evolutionary factor from direct damage to non-target effects. Plants. 12 (5), 1178.
  4. Grinberg M.A., Vodeneev V.A., Il’in N.V., Mareev E.A. 2023. Laboratory simulation of photosynthesis in a wide range of electromagnetic and radiation environment parameters. Astron. Rep. 67, 71–77.
  5. Kovalchuk I., Molinier J., Yao Y., Arkhipov A., Kovalchuk O. 2007. Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat. Res. 624 (1–2), 101–113.
  6. Gudkov S.V., Grinberg M.A., Sukhov V., Vodeneev V. 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 202, 8–24.
  7. Volkova P., Bondarenko E., Kazakova E. 2022. Radiation hormesis in plants. Curr. Opin. Toxicol. 30, 100334.
  8. Hayashi G., Shibato J., Imanaka T., Cho K., Kubo A., Kikuchi S., Satoh K., Kimura S., Ozawa S., Fukutani S., Endo S., Ichikawa K., Agrawal G.K., Shioda S., Fukumoto M., Rakwal R. 2014. Unraveling low-level gamma radiation-responsive changes in expression of early and late genes in leaves of rice seedlings at Iitate Village, Fukushima. J. Hered. 105 (5), 723–738.
  9. Duarte G.T., Volkova P.Y., Geras’kin S.A. 2019. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environ. Pollut. 250, 618–626.
  10. Vanhoudt N., Vandenhove H., Horemans N., Wannijn J., Hees M., Vangronsveld J., Cuypers A. 2010. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana. J. Environ. Radioact. 101 (11), 923–930.
  11. Alikamanoglu S., Yaycili O., Sen A. 2011. Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace Elem. Res. 141 (1–3), 283–293.
  12. Macovei A., Garg B., Raikwar S., Balestrazzi A., Carbonera D., Buttafava A., Tuteja N. 2014. Synergistic exposure of rice seeds to different doses of gamma-ray and salinity stress resulted in increased antioxidant enzyme activities and genespecific modulation of TC-NER pathway. Biomed. Res. Int. 2014, 676934.
  13. Deng C., Wang, T., Wu J., Xu A., Li H., Liu M., Bian P. 2017. Modulation of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat. Res. 796, 20–28.
  14. Grinberg M., Gudkov S., Balalaeva I., Gromova E., Sinitsyna Y., Sukhov V., Vodeneev V. 2021. Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress. Environ. Exp. Bot. 184, 104378.
  15. Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162 (1), 2–12.
  16. Sukhov V., Sukhova E., Vodeneev V. 2019. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 146, 63–84.
  17. Johns S., Hagihara T., Toyota M., Gilroy S. 2021. The fast and the furious: Rapid long-range signaling in plants. Plant Physiol. 185 (3), 694–706.
  18. Ladeynova M., Kuznetsova D., Mudrilov M., Vodeneev V. 2023. Integration of electrical signals and phytohormones in the control of systemic response. Int. J. Mol. Sci. 24 (1), 847.
  19. Esch H., Miltenburgett H., Hug O. 1964. The influence of electrical potentials on algal cells by X-rays. Biophys. l, 380–388.
  20. Vodeneev V., Akinchits E., Sukhov V. 2015. Variation potential in higher plants: Mechanisms of generation and propagation. Plant Signal Behav. 10 (9), e1057365.
  21. Mudrilov M.A., Ladeynova M.M., Kuznetsova D.V., Vodeneev V.A. 2023. Ion channels in electrical signaling in higher plants. Biochem. Moscow. 88, 1467–1487.
  22. Mousavi S.A., Chauvin A., Pascaud F., Kellenberger S., Farmer E.E. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signaling. Nature. 500 (7463), 422–426.
  23. Mangano S., Juarez S.P., Estevez J.M. 2016. ROS regulation of polar growth in plant cells. Plant Physiol. 171 (3), 1593–1605.
  24. Demidchik V. 2018. ROS-activated ion channels in plants: Biophysical characteristics, physiological functions and molecular nature. Int. J. Mol. Sci. 19 (4), 1263.
  25. Meena M.K., Prajapati R., Krishna D., Divakaran K., Pandey Y., Reichelt M., Mathew M.K., Boland W., Mithöfer A., Vadasserya J. 2019. The Ca²⁺ channel CNGC19 regulates arabidopsis defense against spodoptera herbivory. Plant Cell. 31 (7), 153–1562.
  26. Moe-Lange J., Gappel N.M., Machado M., Wudick M.M., Sies C., Schott-Verdugo S.N., Bonus M., Mishra S., Hartwig T., Bezrutczyk M., Basu D., Farmer E.E., Gohlke H., Malkovskiy A., Haswell E.S., Lercher M.J., Ehrhardt D.W., Frommer W.B., Kleist T.J. 2021. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Sci. Adv. 7 (37), eabg4298.
  27. Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92 (4), 1777–1811.
  28. Saito S., Uozumi N. 2019. Guard cell membrane anion transport systems and their regulatory components: an elaborate mechanism controlling stress-induced stomatal closure. Plants. 8 (1), 9.
  29. Cuin T.A., Dreyer I., Michard E. 2018. The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 19 (4), 926.
  30. Choi W.G., Miller G., Wallace I., Harper J., Mittler R., Gilroy S. 2017. Orchestrating rapid long-distance signaling in plants with Ca²⁺, ROS and electrical signals. Plant J. 90 (4), 698–707.
  31. Kim D.S., Kim J.B., Goh E.I., Kim W.I., Kim S.H., Seob Y.W., Jang C.S., Kang S.Y. 2011. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant Physiol. 168 (16), 1960–1971.
  32. Qi W., Zhang L., Feng W., Xu H., Wang L., Jiao Z. 2015. ROS and ABA signaling are involved in the growth stimulation induced by low-dose gamma irradiation in Arabidopsis seedling. Appl. Biochem. Biotechnol. 175 (3), 1490–506.
  33. Biermans G., Horemans N., Vanhoudt N., Vandenhove H., Saenen E., Hees M., Wannijn J., Vangronsveld J., Cuypers A. 2015. Biological effects of α-radiation exposure by241Am in Arabidopsis thaliana seedlings are determined both by dose rate and241Am distribution. J. Environ. Radioact. 149, 51–63.
  34. Sevriukova O., Kanapeckaite A., Lapeikaite I., Kisnieriene V., Ladygiene R., Sakalauskas V. 2014. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell. J. Environ. Radioact. 136, 10–15.
  35. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3 (6), 1101–1108.
  36. Vandenhove H., Vanhoudt N., Cuypers A., Hees M., Wannijn J., Horemans N. 2010. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiol. Biochem. 48 (9), 778–786.
  37. Kim S.H., Song M., Lee K.I., Hwang S.G., Jang C.S., Kim J.B., Kim S.H., Ha B.K., Kang S.Y., Kim D.S. 2012. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol. Biol. Rep. 39 (12), 11231–11248.
  38. Goh E.J., Kim J.B., Kim W.J., Ha B.K., Kim S.H., Kang S.Y., Seo Y.W., Kim D.S. 2014. Physiological changes and anti-oxidative responses of Arabidopsis plants after acute and chronic -irradiation. Radiat. Environ. Biophys. 53 (4), 677–693.
  39. Kang G., Yan D., Chen X., Yang L., Zeng R. 2021. HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Physiol. Plant. 171 (1), 151–160.
  40. Garcia-Mata C., Wang J., Gajdanowicz P., Gonzalez W., Hills A., Donald N., Riedelsberger J., Amtmann A., Dreyer I., Blatt M.R. 2010. A minimal cysteine motif required to activate the SKOR K⁺ channel of Arabidopsis by the reactive oxygen species H₂O₂. J. Biol. Chem. 285 (38), 29286–29294.
  41. Adem G.D., Chen G., Shabala L., Chen Z.H., Shabala S. 2020. GORK Channel: A Master Switch of Plant Metabolism? Trends Plant Sci. 25 (5), 434–445.
  42. Lacombe B., Pilot G., Gaymard F., Sentenac H., Thibaud J.B. 2000. pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett. 466 (2–3), 351–354.
  43. Grinberg M., Nemtsova Y., Ageyeva M., Brilkina A., Vodeneev V. 2023. Effect of low-dose ionizing radiation on spatiotemporal parameters of functional responses induced by electrical signals in tobacco plants. Photosynth. Res. 157 (2–3), 119–132.
  44. Falhof J., Pedersen J.T., Fuglsand A.T., Palmgren M. 2016. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol. Plant. 9 (3), 323–337.
  45. Röttinger E.M., Hug O. 1972. The effects of low energy X-rays on membrane potential, membrane resistance and action potential of Nitella flexilis. Radiat. Res. 50 (3), 491–503.
  46. Marčiulionienė D., Lukšienė B., Montvydienė D., Sakalauskas V., Sevriukova O., Druteikienė R., Jefanova O., Žukauskaitė Z. 2017. Radiocesium phytotoxicity to single cell and higher plants. In: Impact of cesium on plants and the environment. Eds Gupta D.K., Walther C. Cham: Springer, p. 209–230.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (217KB)
3. Fig.2

Download (81KB)
4. Fig.3

Download (225KB)
5. Fig.4

Download (209KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies