Different Forms of Superoxide Dismutase from Pea Seedling Roots Differ in Sensitivity to cAMP and Calcium
- Authors: Lomovatskaya L.A.1, Zaharova O.V.1, Goncharova A.M.1, Romanenko A.S.1, Kishinskaya T.A.2
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
- Baikal State University
- Issue: Vol 41, No 2 (2024)
- Pages: 160-167
- Section: Articles
- URL: https://journals.rcsi.science/0233-4755/article/view/257169
- DOI: https://doi.org/10.31857/S0233475524020073
- EDN: https://elibrary.ru/xngoeb
- ID: 257169
Cite item
Abstract
It has been established that cyclic adenosine monophosphate (cAMP), a second messenger of the adenylate cyclase signaling system, and Ca2+ are able to dose-dependently modulate the activity of various forms of superoxide dismutase (SOD) in the root cells of pea seedlings of the Rondo variety. The effect of cAMP on SOD activity in pea root cells was studied on intact seedlings by incubating their roots in 50 nM n-dibutyryl-cAMP, a fat-soluble analogue of cAMP, which led to an increase in the intracellular concentration of cAMP. Incubation of similar roots in 800 μM suramin, an inhibitor of transmembrane adenylate cyclase, contributed to a significant decrease in endogenous cAMP levels. In each of these variants, the SOD activity measured in the supernatant obtained from the root homogenate changed. Under the influence of n-dibutyryl-cAMP, the total SOD activity increased to 230%; SOD inhibitors, 3 mM KCN or 3 mM H₂O₂, added to the homogenate, reduced its activity (180 and 190% of the control, respectively). During incubation with suramin, the total activity decreased to 40% of the control value, while with the additional use of SOD inhibitors it decreased to 50–60%. Incubation of seedlings in 400 μM LaCl₃ solution resulted in a decrease in total SOD activity to 73% and in the presence of 3 mM KCN, to 56% of the control, and when 3 mM H₂O₂ was added to the homogenate, to 67%. A similar incubation of seedlings in 1 mM EGTA led to a decrease in total activity by 32%, and the inhibitors had no additional effect. The effect of calcium deficiency or excess on SOD activity was studied in a homogenate of pea seedling roots. When a calcium ion chelator, 100 mM EGTA, was added to the root homogenate, a decrease in the total SOD activity to 81% was observed; when inhibitors (H₂O₂ or KCN) were added, an even greater decrease in SOD activity occurred, up to 65 and 51%, respectively. The addition of 500 nM CaCl2 to the homogenate slightly increased the total SOD activity; KCN reduced SOD activity by approximately 20%, and H₂O₂ had no effect on this indicator. When a higher concentration of CaCl2, 500 μM, was added, the total activity did not change (100%), in the variant with KCN it decreased by 30%, and when H₂O₂ was added it remained almost unchanged. We conclude that cAMP most likely has an indirect effect on SOD activity, while calcium ions probably act directly on the active site of the enzyme molecule; Moreover, each form of SOD differs in sensitivity to calcium.
Full Text

About the authors
L. A. Lomovatskaya
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: LidaL@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
O. V. Zaharova
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
Email: LidaL@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
A. M. Goncharova
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
Email: LidaL@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
A. S. Romanenko
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
Email: LidaL@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
T. A. Kishinskaya
Baikal State University
Email: LidaL@sifibr.irk.ru
Russian Federation, Irkutsk, 664002
References
- Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., Takáč T. 2021. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front. Plant Sci. 11, 618835. doi: 10.3389/fpls.2020.618835
- Бараненко В.В. 2006. Супероксиддисмутаза в клетках растений. Цитология. 48 (6), 465–474.
- Del Rio L. A., Sandalio L.M., Altomare D., Zilinskas B. 2003. Mitochondria and peroxisomal manganese superoxide dismutase: Different expression during leaf senescence. J. Exp. Bot. 54, 923–933. doi: 10.3389/fpls.2013.00191
- Herbette S., Lene C., de Iabrouhe D., Drevet J., Roeckel-Drevet P. 2003. Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, photohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol. Plant. 119, 418–428.
- Zameer R., Fatima K., Azeem F., Hussah I.M. ALgwaiz H.I.M, Sadaqat M., Rasheed A., Batool R., Shah A.N., Zaynab M., Shah A.A., Attia K.A., AlKahtani M.D.F., Fiaz S. 2022. Genome-wide characterization of superoxide dismutase (SOD) genes in Daucus carota: Novel insights into structure, expression, and binding interaction with hydrogen peroxide (H2O2) under abiotic stress condition. Front. Plant Sci. 13, 870241. doi: 10.3389/fpls.2022.87021041
- Babitha M.P., Bhat S.G., Prakash H.S., Shetty H.S. 2002. Different induction of superoxide dismutase in downy mildew-resistant and -susceptible genotypes of pearl millet. Plant Pathol. 51 (4), 480–486. doi: 10.1046/j.1365-3059.2002.00733.x
- Casano L.M., Gomes L.D., Lascano H.R., Gonzales C.A., Trippi V.S. 1997. Inactivation and degradation of CuZn-SOD byactive oxygen species in wheat chloroplasts exposed to photooxidativestress. Plant Cell Physiol. 38, 433–440. doi: 10.1093/oxfordjournals.pcp.a029186
- Yan J., Guan L., Sun Y., Zhu Y., Liu L., Lu R., Jiang M., Tan M., Zhang A.C. 2015. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize. Plant Cell Physiol. 56 (5), 883–896. doi: 10.1093/pcp/pcv014
- Blanco E., Fortunato S., Viggiano L., Concetta de Pinto M. 2020. Cyclic AMP: A polyhedral signalling molecule in plants. J. Mol. Sci. 21, 4862. doi: 10.3390/ijms21144862
- Beuchamp I., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287. doi: 10.1016/0003-2697(71)90370-8
- Lomovatskaya L.A., Romanenko A.S., Filinova N.V., Dudareva L.V. 2011. Determination of cAMP in plant cells by a modified enzyme immunoassay method. Plant Cell Rep. 30, 125–132. doi: 10.1007/s00299-010-0950-5
- Ahmed H., Schott E.J., Gauthier J.D., Vasta J.R. 2003. Superoxide dismutases from the oyster parasite Perkinsus marinus: Purification, biochemical characterization, and development of a plate microassay for activity. Anal. Biochem. 318, 132–141. doi: 10.1016/S0003-2697(03)00192-1
- Ma Yi, Zhao Y., Robin K. Walker R.K., Berkowitz G.A. 2013. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiol. 163, 1459–1471. doi: 10.1104/pp.113.226068
- Choi W.G., Toyota M., Kim S.H., Hilleary R., Gilroy S. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. USA. 111, 6497–6502. doi: 10.1073/pnas.1319955111
- Gaupels F., Durner J., Kogel K.-H. 2017. Production, amplification and systemic propagation of redox messengers in plants? The phloem can do it all! New Phytol.), 554–560.
- Kunos V., Csépl˝o M., Seress D., Eser A., Kende Z., Uhrin A., Bányai J., Bakonyi J., Pál M., Mészáros K. 2022. The stimulation of superoxide dismutase enzyme activity and its relation with the pyrenophora teres f. teres infection in different barley genotypes. Sustainability. 14 (2597), 1–15. doi: 10.3390/su14052597
- Sairam R.K., Vasanthan B., Arora A. 2011. Calcium regulates gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiol. Plant. 33, 1897–1904. doi: 10.1007/s11738-011-0734-8
- Hu X., Jiang M., Zhang J., Zhang A., Lin F., Tan M. 2007. Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol. 173. 27–38. doi: 10.1111/j.1469-8137.2006.01888.x
- Jarratt-Barnham E., Wang L., Ning Y., Davies Y.M. 2021.The complex story of plant cyclic nucleotide-gated channels. Int. J. Mol. Sci. 22, 874. doi: 10.3390/ijms22020874
- Saxena I., Srikanth S., Chen Z. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 7, 570. doi: 10.3389/fpls.2016.00570
- Швартау В.В., Вирыч П.А., Маковейчук Т.И., Артеменко А.Ю.3 2014. Кальций в растительных клетках. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 22 (1), 19–32. doi: 10.15421/011403
- Ломоватская Л.А., Романенко А.С., Криволапова Н.В., Копытчук В.Н. 2007. Функционирование “растворимой” и связанной с мембраной форм аденилатциклазы в органеллах растительных клеток при биотическом стрессе. Биол. мембраны. 24 (5), 363–371.
- Романенко А.С., Ломоватская Л.А. 2017. Влияние экзополисахаридов бактериального возбудителя кольцевой гнили на субклеточную локализацию регулируемых циклическими нуклеотидами ионных каналов (CNGC) в клетках корней картофеля. Биол. мембраны. 34 (3), 231–238. doi: 10.7868/S0233475517020062
- Юрина Н.П., Одинцова М.С. 2019. Ретроградная сигнальная система хлоропластов. Физиол. растений. 66 (4), 243–255. doi: 10.1134/S0015330319040146
- Sewelama N., Jasperta N., Van Der Kelenc K., Tognettic V.B., Schmitza J., Frerigmanne H., Stahlg E., Zeierf J., Van Breusegemc F., Maurinoa V.G. 2014. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol. Plant. 7, 1191–1210. doi: 10.1093/mp/ssu070
Supplementary files
