DYNAMICS OF EXCITED STATES OF CH2OO, CH3CHOO AND (CH3)2COO KRIEGE INTERMEDIATES
- Authors: Dyakov Y.A.1, Butkovskaya N.I.1, Vasiliev E.S.1, Rodionov I.D.1, Khomyakova P.S.1, Golubkov M.G.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Issue: Vol 44, No 12 (2025)
- Pages: 78-89
- Section: Химическая физика атмосферных явлений
- URL: https://journals.rcsi.science/0207-401X/article/view/355821
- DOI: https://doi.org/10.7868/S3034612625120096
- ID: 355821
Cite item
Abstract
About the authors
Y. A. Dyakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: yuri_dyakov@mail.ru
Moscow, Russia
N. I. Butkovskaya
Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscow, Russia
E. S. Vasiliev
Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscow, Russia
I. D. Rodionov
Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscow, Russia
P. S. Khomyakova
Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscow, Russia
M. G. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscow, Russia
References
- Criegee R., Wenner G. // Justus Liebigs Ann. Chem. 1949. V. 564. № 1. P. 9. https://doi.org/10.1002/jlac.19495640103
- Khan M.A.H., Percival C.J., Caravan R.L. et al. // Environ. Sci. Process. Impacts. 2018. V. 20. № 3. P. 437. https://doi.org/10.1039/C7EM00585G
- Taatjes C.A., Shallcross D.E., Percival C.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1704. https://doi.org/10.1039/c3cp52842a
- Kanakidou M., Seinfeld J.H., Pandis S.N. et al. // Atmos. Chem. Phys. 2005. V. 5. № 4. P. 1053. https://doi.org/10.5194/acp-5-1053-2005
- Kumar M., Francisco J.S. // J. Phys. Chem. Lett. 2017. V. 8. № 17. P. 4206. https://doi.org/10.1021/acs.jpclett.7b01762
- Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22. https://doi.org/10.31857/S0207401X21100034
- Dyakov Y.A., Adamson S.O., Golubkov G.V. et al. // Atoms. 2023. V. 11. № 12. 157. https://doi.org/10.3390/atoms11120157
- Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
- Herron J.T., Martinez R.I., Huie R.E. // Int. J. Chem. Kinet. 1982. V. 14. № 3. P. 225. https://doi.org/10.1002/kin.550140303
- Lelieveld J., Dentener F.J., Peters W. et al. // Atmos. Chem. Phys. 2004. V. 4. № 9/10. P. 2337. https://doi.org/10.5194/acp-4-2337-2004
- Taatjes C.A., Welz O., Eskola A.J. et al. // Science. 2013. V. 340. № 6129. P. 177. https://doi.org/10.1126/science.1234689
- Chao W., Hsieh J.T., Chang C.H. et al. // Science. 2015. V. 347. № 6223. P. 751. https://doi.org/10.1126/science.1261549
- Long B., Bao J.L., Truhlar D.G. // J. Am. Chem. Soc. 2016. V. 138. № 43. P. 14409. https://doi.org/10.1021/jacs.6b08655
- Smith M.C., Chang C.H., Chao W. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 14. P. 2708. https://doi.org/10.1021/acs.jpclett.5b01109
- Lin L.C., Chang H.T., Chang C.H. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 6. P. 4557. https://doi.org/10.1039/C5CP06446E
- Levy H. // Science. 1971. V. 173. № 3992. P. 141. https://doi.org/10.1126/science.173.3992.141
- Kidwell N.M., Li H., Wang X. et al. // Nat. Chem. 2016. V. 8. № 5. P. 509. https://doi.org/10.1038/nchem.2488
- Wang X.H., Bowman J.M. // J. Phys. Chem. Lett. 2016. V. 7. № 17. P. 3359. https://doi.org/10.1021/acs.jpclett.6b01392
- Fang Y., Liu F., Barber V.P. et al. // J. Chem. Phys. 2016. V. 144. № 6. 061102. https://doi.org/10.1063/1.4941768
- Foreman E.S., Kapnas K.M., Murray C. // Angew. Chemie Int. Ed. 2016. V. 55. № 35. P. 10419. https://doi.org/10.1002/anie.201604662
- Chhantyal-Pun R., McGillen M.R., Beames J.M. et al. // Angew. Chemie Int. Ed. 2017. V. 56. № 31. P. 9044. https://doi.org/10.1002/anie.201703700
- Behera B., Takahashi K., Lee Y.P. // Phys. Chem. Chem. Phys. 2022. V. 24. № 31. P. 18568. https://doi.org/10.1039/D2CP01053D
- Hallquist M., Wenger J.C., Baltensperger U. et al. // Atmos. Chem. Phys. 2009. V. 9. № 14. P. 5155. https://doi.org/10.5194/acp-9-5155-2009
- Taatjes C.A., Khan M.A.H., Eskola A.J. et al. // Environ. Sci. Technol. 2019. V. 53. № 3. P. 1245. https://doi.org/10.1021/acs.est.8b05073
- Vereecken L., Harder H., Novelli A. // Phys. Chem. Chem. Phys. 2012. V. 14. № 42. P. 14682. https://doi.org/10.1039/c2cp42300f
- Mauldin III R.L., Berndt T., Sipilä M. et al. // Nature. 2012. V. 488. № 7410. P. 193. https://doi.org/10.1038/nature11278
- Huang H.L., Chao W., Lin J.J.M. // Proc. Natl. Acad. Sci. 2015. V. 112. № 35. P. 10857. https://doi.org/10.1073/pnas.1513149112
- Kesselmeier J., Staudt M. // J. Atmos. Chem. 1999. V. 33. P. 23. https://doi.org/10.1023/A:1006127516791
- Sindelarova K., Granier C., Bouarar I. et al. // Atmos. Chem. Phys. 2014. V. 14. № 17. P. 9317. https://doi.org/10.5194/acp-14-9317-2014
- Gérard V., Galopin C., Ay E. et al. // Food Chem. 2021. V. 359. 129949. https://doi.org/10.1016/j.foodchem.2021.129949
- Wang P.K. // J. Geophys. Res. Atmos. 2003. V. 108. № D6. P. 1. https://doi.org/10.1029/2002JD002581
- Wang P.K. // Geophys. Res. Lett. 2004. V. 31. № 18. L18106. https://doi.org/10.1029/2004GL020787
- Wang P.K. // Atmos. Res. 2007. V. 83. № 2–4. P. 254. https://doi.org/10.1016/j.atmosres.2005.08.010
- Wang P.K. Physics and Dynamics of Clouds and Precipitation. New York: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9780511794285
- Nair P.R., Kavitha M. // Int. J. Remote Sens. 2020. V. 41. № 21. P. 8380. https://doi.org/10.1080/01431161.2020.1779376
- Shinbori A., Otsuka Y., Sori T. et al. // Earth, Planets Sp. 2022. V. 74. № 1. 106. https://doi.org/10.1186/s40623-022-01665-8
- Choi W., Kim S., Grant W.B. et al. // J. Geophys. Res. Atmos. 2002. V. 107. № D24. 8209. https://doi.org/10.1029/2001JD000644
- Дьяков Ю.А., Курдяева Ю.А., Борчевкина О.П. и др. // Хим. физика. 2020. Т. 39. № 4. C. 56. https://doi.org/10.31857/S0207401X20040068
- Borchevkina O.P., Adamson S.O., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 9. 1116. https://doi.org/10.3390/atmos12091116
- Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 11. 1384. https://doi.org/10.3390/atmos12111384
- Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 53. https://doi.org/10.31857/S0207401X22050053
- Mohammad S., Wang P.K., Chou Y.L. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 549. https://doi.org/10.1134/S1990793122030198
- Кшевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Хим. физика. 2023. Т. 42. № 10. С. 77. https://doi.org/10.31857/S0207401X23100096
- Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2023. Т. 42. № 4. С. 73. https://doi.org/10.31857/S0207401X23040039
- Курдяева Ю.А., Бессараб Ф.С., Борчевкина О.П. и др. // Хим. физика. 2024. Т. 43. № 6. С. 91. https://doi.org/10.31857/S0207401X24060105
- Chou Y., Wang P.K // J. Geophys. Res. Atmos. 2024. V. 129. № 23. e2024JD041725. https://doi.org/10.1029/2024JD041725
- Borchevkina O.P., Timchenko A.V., Bessarab F.S. et al. // Atmosphere. 2025. V. 16. № 6. 690. https://doi.org/10.3390/atmos16060690
- Hsu H.C., Tsai M.T., Dyakov Y.A. et al. // Int. Rev. Phys. Chem. 2012. V. 31. № 2. P. 201. https://doi.org/10.1080/0144235X.2012.673282
- Larsson M., Orel A.E. Dissociative recombination of molecular ions. New York: Cambridge University Press, 2008.
- Li Y., Gong Q., Yue L. et al. // J. Phys. Chem. Lett. 2018. V. 9. № 5. P. 978. https://doi.org/10.1021/acs.jpclett.8b00023
- Wang Z., Dyakov Y.A., Bu Y. // J. Phys. Chem. A. 2019. V. 123. № 5. P. 1085. https://doi.org/10.1021/acs.jpca.8b11908
- Zhou X.H., Liu Y.Q., Dong W.R. et al. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 4817. https://doi.org/10.1021/acs.jpclett.9b01740
- Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 5. С. 68. https://doi.org/10.31857/S0207401X21050046
- Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85. https://doi.org/10.31857/S0207401X22060036
- Dyakov Y.A., Stepanov I.G., Adamson S.O. et al. // ACS Earth Sp. Chem. 2025. V. 9. № 3. P. 671. https://doi.org/10.1021/acsearthspacechem.4c00365
- Welz O., Eskola A.J., Sheps L. et al. // Angew. Chemie Int. Ed. 2014. V. 53. № 18. P. 4547. https://doi.org/10.1002/anie.201400964
- Nguyen T.L., McCaslin L., McCarthy M.C. et al. // J. Chem. Phys. 2016. V. 145. № 13. 131102. https://doi.org/10.1063/1.4964393
- Sheps L. // J. Phys. Chem. Lett. 2013. V. 4. № 24. P. 4201. https://doi.org/10.1021/jz402191w
- Wang Y.Y., Chung C.Y., Lee Y.P. // J. Chem. Phys. 2016. V. 145. № 15. 154303. https://doi.org/10.1063/1.4964658
- Sheps L., Scully A.M., Au K. // Phys. Chem. Chem. Phys. 2014. V. 16. № 48. P. 26701. https://doi.org/10.1039/C4CP04408H
- Beames J.M., Liu F., Lu L. et al. // J. Chem. Phys. 2013. V. 138. № 24. 244307. https://doi.org/10.1063/1.4810865
- Lee Y.P. // J. Chem. Phys. 2015. V. 143. № 2. 020901. https://doi.org/10.1063/1.4923165
- Ting A.W.L., Lin J.J.M. // J. Chinese Chem. Soc. 2017. V. 64. № 4. P. 360. https://doi.org/10.1002/jccs.201700049
- Ting W.L., Chen Y.H., Chao W. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 22. P. 10438. https://doi.org/10.1039/C4CP00877D
- Liu F., Beames J.M., Green A.M. et al. // J. Phys. Chem. A. 2014. V. 118. № 12. P. 2298. https://doi.org/10.1021/jp412726z
- Werner H.J., Knowles P.J. // J. Chem. Phys. 1985. V. 82. № 11. P. 5053. https://doi.org/10.1063/1.448627
- Knowles P.J., Werner H.J. // Chem. Phys. Lett. 1985. V. 115. № 3. P. 259. https://doi.org/10.1016/0009-2614(85)80025-7
- Werner H.J., Knowles P.J., Knizia G. et al. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 2. P. 242. https://doi.org/10.1002/wcms.82
- Werner H.J., Knowles P.J., Manby F.R. et al. // J. Chem. Phys. 2020. V. 152. № 14. 144107. https://doi.org/10.1063/5.0005081
- Marchetti B., Esposito V.J., Bush R.E. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 532. https://doi.org/10.1039/D1CP02601A
- Kalinowski J., Foreman E.S., Kapnas K.M. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 16. P. 10941. https://doi.org/10.1039/C6CP00807K
- Esposito V.J., Werba O., Bush S.A. et al. // Photochem. Photobiol. 2022. V. 98. № 4. P. 763. https://doi.org/10.1111/php.13560
- Mai S., Avagliano D., Heindl M. et al. SHARC3.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics. 2023. https://doi.org/10.5281/zenodo.7828641
- Mai S., Marquetand P., González L. // WIREs Comput. Mol. Sci. 2018. V. 8. № 6. P. 1. https://doi.org/10.1002/wcms.1370
- Dyakov Y.A., Ho Y.C., Hsu W.H. et al. // Chem. Phys. 2018. V. 515. P. 543. https://doi.org/10.1016/j.chemphys.2018.09.019
- Dyakov Y.A., Toliautas S., Trakhtenberg L.I. et al. // Chem. Phys. 2018. V. 515. P. 672. https://doi.org/10.1016/j.chemphys.2018.07.020
Supplementary files


