DYNAMICS OF EXCITED STATES OF CH2OO, CH3CHOO AND (CH3)2COO KRIEGE INTERMEDIATES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Carbonyl oxides, or Criegee intermediates, are chemically active compounds that readily react with other atmospheric components, promoting the formation of OH and CH3 radicals, nitrogen oxides, aldehydes, hydrogen peroxide, and various acids. In this work, we consider the physicochemical processes involving electronically excited states of three simple Criegee intermediates: CH2OO, CH3CHOO and (CH3)2COO. In addition to the ground state S0, the calculation scheme included four low-lying excited electronic states: S1 (nπ*), S2 (ππ*), S3 (nπ*), and S4 (ππ*). It was found that the optical transitions S0→S2 and S0→S4 have comparatively large dipole moments; therefore, they are observed in the absorption spectra of these compounds and play a key role in atmospheric processes. Analysis of the PES structures corresponding to these excited states, their relative arrangement, local minima and maxima, as well as intersection points, showed that under photoexcitation in typical atmospheric conditions the most probable chemical reaction is direct O—O bond cleavage in the S2 (ππ*) or S4 (ππ*) states, leading to oxygen atom detachment O(1D). Under more complex conditions, when the molecule possesses a sufficient amount of internal energy, transitions to lower-lying electronic states are possible, whose equilibrium geometries strongly differ from the initial ones. This results in the release of a large amount of energy and subsequent relaxation of the molecule into the ground electronic state S0.

Sobre autores

Y. Dyakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: yuri_dyakov@mail.ru
Moscow, Russia

N. Butkovskaya

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

E. Vasiliev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

I. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

P. Khomyakova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

M. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Criegee R., Wenner G. // Justus Liebigs Ann. Chem. 1949. V. 564. № 1. P. 9. https://doi.org/10.1002/jlac.19495640103
  2. Khan M.A.H., Percival C.J., Caravan R.L. et al. // Environ. Sci. Process. Impacts. 2018. V. 20. № 3. P. 437. https://doi.org/10.1039/C7EM00585G
  3. Taatjes C.A., Shallcross D.E., Percival C.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1704. https://doi.org/10.1039/c3cp52842a
  4. Kanakidou M., Seinfeld J.H., Pandis S.N. et al. // Atmos. Chem. Phys. 2005. V. 5. № 4. P. 1053. https://doi.org/10.5194/acp-5-1053-2005
  5. Kumar M., Francisco J.S. // J. Phys. Chem. Lett. 2017. V. 8. № 17. P. 4206. https://doi.org/10.1021/acs.jpclett.7b01762
  6. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22. https://doi.org/10.31857/S0207401X21100034
  7. Dyakov Y.A., Adamson S.O., Golubkov G.V. et al. // Atoms. 2023. V. 11. № 12. 157. https://doi.org/10.3390/atoms11120157
  8. Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
  9. Herron J.T., Martinez R.I., Huie R.E. // Int. J. Chem. Kinet. 1982. V. 14. № 3. P. 225. https://doi.org/10.1002/kin.550140303
  10. Lelieveld J., Dentener F.J., Peters W. et al. // Atmos. Chem. Phys. 2004. V. 4. № 9/10. P. 2337. https://doi.org/10.5194/acp-4-2337-2004
  11. Taatjes C.A., Welz O., Eskola A.J. et al. // Science. 2013. V. 340. № 6129. P. 177. https://doi.org/10.1126/science.1234689
  12. Chao W., Hsieh J.T., Chang C.H. et al. // Science. 2015. V. 347. № 6223. P. 751. https://doi.org/10.1126/science.1261549
  13. Long B., Bao J.L., Truhlar D.G. // J. Am. Chem. Soc. 2016. V. 138. № 43. P. 14409. https://doi.org/10.1021/jacs.6b08655
  14. Smith M.C., Chang C.H., Chao W. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 14. P. 2708. https://doi.org/10.1021/acs.jpclett.5b01109
  15. Lin L.C., Chang H.T., Chang C.H. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 6. P. 4557. https://doi.org/10.1039/C5CP06446E
  16. Levy H. // Science. 1971. V. 173. № 3992. P. 141. https://doi.org/10.1126/science.173.3992.141
  17. Kidwell N.M., Li H., Wang X. et al. // Nat. Chem. 2016. V. 8. № 5. P. 509. https://doi.org/10.1038/nchem.2488
  18. Wang X.H., Bowman J.M. // J. Phys. Chem. Lett. 2016. V. 7. № 17. P. 3359. https://doi.org/10.1021/acs.jpclett.6b01392
  19. Fang Y., Liu F., Barber V.P. et al. // J. Chem. Phys. 2016. V. 144. № 6. 061102. https://doi.org/10.1063/1.4941768
  20. Foreman E.S., Kapnas K.M., Murray C. // Angew. Chemie Int. Ed. 2016. V. 55. № 35. P. 10419. https://doi.org/10.1002/anie.201604662
  21. Chhantyal-Pun R., McGillen M.R., Beames J.M. et al. // Angew. Chemie Int. Ed. 2017. V. 56. № 31. P. 9044. https://doi.org/10.1002/anie.201703700
  22. Behera B., Takahashi K., Lee Y.P. // Phys. Chem. Chem. Phys. 2022. V. 24. № 31. P. 18568. https://doi.org/10.1039/D2CP01053D
  23. Hallquist M., Wenger J.C., Baltensperger U. et al. // Atmos. Chem. Phys. 2009. V. 9. № 14. P. 5155. https://doi.org/10.5194/acp-9-5155-2009
  24. Taatjes C.A., Khan M.A.H., Eskola A.J. et al. // Environ. Sci. Technol. 2019. V. 53. № 3. P. 1245. https://doi.org/10.1021/acs.est.8b05073
  25. Vereecken L., Harder H., Novelli A. // Phys. Chem. Chem. Phys. 2012. V. 14. № 42. P. 14682. https://doi.org/10.1039/c2cp42300f
  26. Mauldin III R.L., Berndt T., Sipilä M. et al. // Nature. 2012. V. 488. № 7410. P. 193. https://doi.org/10.1038/nature11278
  27. Huang H.L., Chao W., Lin J.J.M. // Proc. Natl. Acad. Sci. 2015. V. 112. № 35. P. 10857. https://doi.org/10.1073/pnas.1513149112
  28. Kesselmeier J., Staudt M. // J. Atmos. Chem. 1999. V. 33. P. 23. https://doi.org/10.1023/A:1006127516791
  29. Sindelarova K., Granier C., Bouarar I. et al. // Atmos. Chem. Phys. 2014. V. 14. № 17. P. 9317. https://doi.org/10.5194/acp-14-9317-2014
  30. Gérard V., Galopin C., Ay E. et al. // Food Chem. 2021. V. 359. 129949. https://doi.org/10.1016/j.foodchem.2021.129949
  31. Wang P.K. // J. Geophys. Res. Atmos. 2003. V. 108. № D6. P. 1. https://doi.org/10.1029/2002JD002581
  32. Wang P.K. // Geophys. Res. Lett. 2004. V. 31. № 18. L18106. https://doi.org/10.1029/2004GL020787
  33. Wang P.K. // Atmos. Res. 2007. V. 83. № 2–4. P. 254. https://doi.org/10.1016/j.atmosres.2005.08.010
  34. Wang P.K. Physics and Dynamics of Clouds and Precipitation. New York: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9780511794285
  35. Nair P.R., Kavitha M. // Int. J. Remote Sens. 2020. V. 41. № 21. P. 8380. https://doi.org/10.1080/01431161.2020.1779376
  36. Shinbori A., Otsuka Y., Sori T. et al. // Earth, Planets Sp. 2022. V. 74. № 1. 106. https://doi.org/10.1186/s40623-022-01665-8
  37. Choi W., Kim S., Grant W.B. et al. // J. Geophys. Res. Atmos. 2002. V. 107. № D24. 8209. https://doi.org/10.1029/2001JD000644
  38. Дьяков Ю.А., Курдяева Ю.А., Борчевкина О.П. и др. // Хим. физика. 2020. Т. 39. № 4. C. 56. https://doi.org/10.31857/S0207401X20040068
  39. Borchevkina O.P., Adamson S.O., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 9. 1116. https://doi.org/10.3390/atmos12091116
  40. Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 11. 1384. https://doi.org/10.3390/atmos12111384
  41. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 53. https://doi.org/10.31857/S0207401X22050053
  42. Mohammad S., Wang P.K., Chou Y.L. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 549. https://doi.org/10.1134/S1990793122030198
  43. Кшевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Хим. физика. 2023. Т. 42. № 10. С. 77. https://doi.org/10.31857/S0207401X23100096
  44. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2023. Т. 42. № 4. С. 73. https://doi.org/10.31857/S0207401X23040039
  45. Курдяева Ю.А., Бессараб Ф.С., Борчевкина О.П. и др. // Хим. физика. 2024. Т. 43. № 6. С. 91. https://doi.org/10.31857/S0207401X24060105
  46. Chou Y., Wang P.K // J. Geophys. Res. Atmos. 2024. V. 129. № 23. e2024JD041725. https://doi.org/10.1029/2024JD041725
  47. Borchevkina O.P., Timchenko A.V., Bessarab F.S. et al. // Atmosphere. 2025. V. 16. № 6. 690. https://doi.org/10.3390/atmos16060690
  48. Hsu H.C., Tsai M.T., Dyakov Y.A. et al. // Int. Rev. Phys. Chem. 2012. V. 31. № 2. P. 201. https://doi.org/10.1080/0144235X.2012.673282
  49. Larsson M., Orel A.E. Dissociative recombination of molecular ions. New York: Cambridge University Press, 2008.
  50. Li Y., Gong Q., Yue L. et al. // J. Phys. Chem. Lett. 2018. V. 9. № 5. P. 978. https://doi.org/10.1021/acs.jpclett.8b00023
  51. Wang Z., Dyakov Y.A., Bu Y. // J. Phys. Chem. A. 2019. V. 123. № 5. P. 1085. https://doi.org/10.1021/acs.jpca.8b11908
  52. Zhou X.H., Liu Y.Q., Dong W.R. et al. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 4817. https://doi.org/10.1021/acs.jpclett.9b01740
  53. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 5. С. 68. https://doi.org/10.31857/S0207401X21050046
  54. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85. https://doi.org/10.31857/S0207401X22060036
  55. Dyakov Y.A., Stepanov I.G., Adamson S.O. et al. // ACS Earth Sp. Chem. 2025. V. 9. № 3. P. 671. https://doi.org/10.1021/acsearthspacechem.4c00365
  56. Welz O., Eskola A.J., Sheps L. et al. // Angew. Chemie Int. Ed. 2014. V. 53. № 18. P. 4547. https://doi.org/10.1002/anie.201400964
  57. Nguyen T.L., McCaslin L., McCarthy M.C. et al. // J. Chem. Phys. 2016. V. 145. № 13. 131102. https://doi.org/10.1063/1.4964393
  58. Sheps L. // J. Phys. Chem. Lett. 2013. V. 4. № 24. P. 4201. https://doi.org/10.1021/jz402191w
  59. Wang Y.Y., Chung C.Y., Lee Y.P. // J. Chem. Phys. 2016. V. 145. № 15. 154303. https://doi.org/10.1063/1.4964658
  60. Sheps L., Scully A.M., Au K. // Phys. Chem. Chem. Phys. 2014. V. 16. № 48. P. 26701. https://doi.org/10.1039/C4CP04408H
  61. Beames J.M., Liu F., Lu L. et al. // J. Chem. Phys. 2013. V. 138. № 24. 244307. https://doi.org/10.1063/1.4810865
  62. Lee Y.P. // J. Chem. Phys. 2015. V. 143. № 2. 020901. https://doi.org/10.1063/1.4923165
  63. Ting A.W.L., Lin J.J.M. // J. Chinese Chem. Soc. 2017. V. 64. № 4. P. 360. https://doi.org/10.1002/jccs.201700049
  64. Ting W.L., Chen Y.H., Chao W. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 22. P. 10438. https://doi.org/10.1039/C4CP00877D
  65. Liu F., Beames J.M., Green A.M. et al. // J. Phys. Chem. A. 2014. V. 118. № 12. P. 2298. https://doi.org/10.1021/jp412726z
  66. Werner H.J., Knowles P.J. // J. Chem. Phys. 1985. V. 82. № 11. P. 5053. https://doi.org/10.1063/1.448627
  67. Knowles P.J., Werner H.J. // Chem. Phys. Lett. 1985. V. 115. № 3. P.  259. https://doi.org/10.1016/0009-2614(85)80025-7
  68. Werner H.J., Knowles P.J., Knizia G. et al. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 2. P. 242. https://doi.org/10.1002/wcms.82
  69. Werner H.J., Knowles P.J., Manby F.R. et al. // J. Chem. Phys. 2020. V. 152. № 14. 144107. https://doi.org/10.1063/5.0005081
  70. Marchetti B., Esposito V.J., Bush R.E. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 532. https://doi.org/10.1039/D1CP02601A
  71. Kalinowski J., Foreman E.S., Kapnas K.M. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. № 16. P. 10941. https://doi.org/10.1039/C6CP00807K
  72. Esposito V.J., Werba O., Bush S.A. et al. // Photochem. Photobiol. 2022. V. 98. № 4. P. 763. https://doi.org/10.1111/php.13560
  73. Mai S., Avagliano D., Heindl M. et al. SHARC3.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics. 2023. https://doi.org/10.5281/zenodo.7828641
  74. Mai S., Marquetand P., González L. // WIREs Comput. Mol. Sci. 2018. V. 8. № 6. P. 1. https://doi.org/10.1002/wcms.1370
  75. Dyakov Y.A., Ho Y.C., Hsu W.H. et al. // Chem. Phys. 2018. V. 515. P. 543. https://doi.org/10.1016/j.chemphys.2018.09.019
  76. Dyakov Y.A., Toliautas S., Trakhtenberg L.I. et al. // Chem. Phys. 2018. V. 515. P. 672. https://doi.org/10.1016/j.chemphys.2018.07.020

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».