Shock-wave properties of emulsion matrix at various concentrations of glass microspheres

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

There has been conducted research of shock-wave properties of an emulsion explosive (EE) based on ammonium nitrate, with the concentration of hollow glass microspheres ranging from 0% to 4 wt%. Shock waves in the studied samples were created by aluminum plates, which were accelerated by explosion products to speeds of 0.6 to 5 km/s. The wave velocity profiles were measured using a VISAR laser Doppler interferometer at the boundary with the water window or when the shock wave exited the free surface. The processed experimental data provided the basis for making the Hugoniots of the investigated compounds. An assessment of the dependence of the sound velocity on pressure for an emulsion matrix has been made. At low pressures, the mixture of the emulsion matrix and the microspheres feature the formation of a two-wave configuration. It is demonstrated that the increase of microspheres concentration causes a rapid decrease of activation threshold of explosive transformation, and at 4% of microspheres the said threshold value is below 1.1 GPa.

作者简介

A. Zubareva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: zan@ficp.ac.ru
Chernogolovka, Russia

V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry; Blagonravov Mechanical Engineering Research Institute

Email: zan@ficp.ac.ru
Chernogolovka, Russia; Moscow, Russia

A. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

编辑信件的主要联系方式.
Email: zan@ficp.ac.ru
Chernogolovka, Russia

参考

  1. Budov V.V. // Glass Ceram. 1994. V. 51. № 7-8. P. 230. https://doi.org/10.1007/BF00680655
  2. Ostrik A.V., Potapenko A.I. // Composite materials constructions (CM). 2001. № 1. P. 48. [In Russian].
  3. Efremov V.P., Potapenko A.I., Fortov V.E. // Problems of Atomic Science and Technology. 2000. V. 2. № 1. P. 152. [In Russian].
  4. Zel’dovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publ., 2002.
  5. Zubareva A.N., Utkin A.V., Lavrov V.V. // Combust. Explos. Shock Waves. 2018. V. 54. № 5. P. 543. https://doi.org/10.1134/S0010508218050052
  6. Ziborov V.S., Kanel’ G.I., Rostilov T.A. // Combust. Explos. Shock Waves. 2020. V. 56. P. 237. https://doi.org/10.1134/S001050822002015X
  7. Landau L.D., Lifshitz E.M. Course of Theoretical Physics: Fluid Mechanics. V. 6. Oxford, UK: Pergamon Press, 1987.
  8. Yoshida M., Iida M., Tanaka K. et al. // Proc. 8th Sympos. Intern. on Detonation. 1985. P. 993.
  9. Lee J., Sandstrom F.W., Graig B.G., Persson P.A. // Proc. 9th Sympos. Intern. on Detonation. 1989. P. 573.
  10. Sil’verstov V.V., Plastinin A.V., Karakhanov S.M., Zykov V.V. // Combust. Explos. Shock Waves. 2008. V. 44. № 3. P. 354. https://doi.org/10.1007/s10573-008-0043-8
  11. Yunoshev A.S., Sil’vestrov V.V., Plastinin A.V. Rafei­chik S.I. // Ibid. 2017. V. 53. № 2. P. 205. https://doi.org/10.1134/S0010508217020113
  12. Voskoboinikov I.M., Afanasenkov A.N., Bogomo­lov V.M. // Ibid. 1967 V. 3. P. 359.
  13. Woolfolk R.W., Cowperthwaite M., Shaw R. // Thermo­chim. Acta. 1973. V. 5. № 4. P. 409.
  14. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. Rafei­chik S.I. // Combust. Explos. Shock Waves. 2014. V. 50. № 4. P. 470. https://doi.org/10.1134/S0010508214040169
  15. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. // Ibid. № 6. P. 716. https://doi.org/10.1134/S0010508214060136
  16. Physics of Explosion / Ed. Orlenko L.P. М.: Fizmatlit, 2002. V. 1. [In Russian].
  17. Kanel G.I., Razorenov S.V., Fortov V.E. Shock-wave phenomena and the properties of condensed matter. New York: Springer Science & Business Media, 2004.
  18. Mochalova V.M., Utkin A.V., Garanin V.A., Toru­nov S.I. // Combust. Explos. Shock Waves. 2009. V. 45. № 3. P. 320.
  19. Mochalova V.M., Utkin A.V., Anan’In A.V. // Ibid. 2007. V. 43. № 5. P. 575. https://doi.org/10.1007/s10573-007-0077-3
  20. Kolesnikov S.A., Utkin A.V. // Ibid. № 6. P. 710. https://doi.org/10.1007/s10573-007-0096-0
  21. Gafarov B.R., Utkin A.V., Razorenov S.V. et al. // J. Appl. Mech. Tech. Phys. 1999. V. 40. № 3. P. 501. https://doi.org/10.1007/BF02468407
  22. Zharkov V.N., Kalinin V.A. Equations of state for solids at high pressures and temperatures. New York: Consultants Bureau, 1971.
  23. Dremin A.N., Karpukhin I.A. // J. Appl. Mech. Tech. Phys. 1960. № 3. P. 184 [In Russian].
  24. Budov V.V. // Problemy Prochnosti (Strength Issues). 1991. V. 5. P. 68. [In Russian].
  25. Herrmann W. // J. Appl. Phys. 1969. V. 40. № 6. P. 2490.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).