Shock-wave properties of emulsion matrix at various concentrations of glass microspheres

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There has been conducted research of shock-wave properties of an emulsion explosive (EE) based on ammonium nitrate, with the concentration of hollow glass microspheres ranging from 0% to 4 wt%. Shock waves in the studied samples were created by aluminum plates, which were accelerated by explosion products to speeds of 0.6 to 5 km/s. The wave velocity profiles were measured using a VISAR laser Doppler interferometer at the boundary with the water window or when the shock wave exited the free surface. The processed experimental data provided the basis for making the Hugoniots of the investigated compounds. An assessment of the dependence of the sound velocity on pressure for an emulsion matrix has been made. At low pressures, the mixture of the emulsion matrix and the microspheres feature the formation of a two-wave configuration. It is demonstrated that the increase of microspheres concentration causes a rapid decrease of activation threshold of explosive transformation, and at 4% of microspheres the said threshold value is below 1.1 GPa.

About the authors

A. N. Zubareva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: zan@ficp.ac.ru
Chernogolovka, Russia

V. V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry; Blagonravov Mechanical Engineering Research Institute

Email: zan@ficp.ac.ru
Chernogolovka, Russia; Moscow, Russia

A. V. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Author for correspondence.
Email: zan@ficp.ac.ru
Chernogolovka, Russia

References

  1. Budov V.V. // Glass Ceram. 1994. V. 51. № 7-8. P. 230. https://doi.org/10.1007/BF00680655
  2. Ostrik A.V., Potapenko A.I. // Composite materials constructions (CM). 2001. № 1. P. 48. [In Russian].
  3. Efremov V.P., Potapenko A.I., Fortov V.E. // Problems of Atomic Science and Technology. 2000. V. 2. № 1. P. 152. [In Russian].
  4. Zel’dovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publ., 2002.
  5. Zubareva A.N., Utkin A.V., Lavrov V.V. // Combust. Explos. Shock Waves. 2018. V. 54. № 5. P. 543. https://doi.org/10.1134/S0010508218050052
  6. Ziborov V.S., Kanel’ G.I., Rostilov T.A. // Combust. Explos. Shock Waves. 2020. V. 56. P. 237. https://doi.org/10.1134/S001050822002015X
  7. Landau L.D., Lifshitz E.M. Course of Theoretical Physics: Fluid Mechanics. V. 6. Oxford, UK: Pergamon Press, 1987.
  8. Yoshida M., Iida M., Tanaka K. et al. // Proc. 8th Sympos. Intern. on Detonation. 1985. P. 993.
  9. Lee J., Sandstrom F.W., Graig B.G., Persson P.A. // Proc. 9th Sympos. Intern. on Detonation. 1989. P. 573.
  10. Sil’verstov V.V., Plastinin A.V., Karakhanov S.M., Zykov V.V. // Combust. Explos. Shock Waves. 2008. V. 44. № 3. P. 354. https://doi.org/10.1007/s10573-008-0043-8
  11. Yunoshev A.S., Sil’vestrov V.V., Plastinin A.V. Rafei­chik S.I. // Ibid. 2017. V. 53. № 2. P. 205. https://doi.org/10.1134/S0010508217020113
  12. Voskoboinikov I.M., Afanasenkov A.N., Bogomo­lov V.M. // Ibid. 1967 V. 3. P. 359.
  13. Woolfolk R.W., Cowperthwaite M., Shaw R. // Thermo­chim. Acta. 1973. V. 5. № 4. P. 409.
  14. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. Rafei­chik S.I. // Combust. Explos. Shock Waves. 2014. V. 50. № 4. P. 470. https://doi.org/10.1134/S0010508214040169
  15. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. // Ibid. № 6. P. 716. https://doi.org/10.1134/S0010508214060136
  16. Physics of Explosion / Ed. Orlenko L.P. М.: Fizmatlit, 2002. V. 1. [In Russian].
  17. Kanel G.I., Razorenov S.V., Fortov V.E. Shock-wave phenomena and the properties of condensed matter. New York: Springer Science & Business Media, 2004.
  18. Mochalova V.M., Utkin A.V., Garanin V.A., Toru­nov S.I. // Combust. Explos. Shock Waves. 2009. V. 45. № 3. P. 320.
  19. Mochalova V.M., Utkin A.V., Anan’In A.V. // Ibid. 2007. V. 43. № 5. P. 575. https://doi.org/10.1007/s10573-007-0077-3
  20. Kolesnikov S.A., Utkin A.V. // Ibid. № 6. P. 710. https://doi.org/10.1007/s10573-007-0096-0
  21. Gafarov B.R., Utkin A.V., Razorenov S.V. et al. // J. Appl. Mech. Tech. Phys. 1999. V. 40. № 3. P. 501. https://doi.org/10.1007/BF02468407
  22. Zharkov V.N., Kalinin V.A. Equations of state for solids at high pressures and temperatures. New York: Consultants Bureau, 1971.
  23. Dremin A.N., Karpukhin I.A. // J. Appl. Mech. Tech. Phys. 1960. № 3. P. 184 [In Russian].
  24. Budov V.V. // Problemy Prochnosti (Strength Issues). 1991. V. 5. P. 68. [In Russian].
  25. Herrmann W. // J. Appl. Phys. 1969. V. 40. № 6. P. 2490.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).