Dynamics and energy of combustion of ultra-lean mixtures of hydrogen with air in a limited volume

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the combustion dynamics inside a closed volume filled with pre-mixed hydrogen-air mixtures with a composition close to the lower flammability limit is investigated based on a detailed numerical analysis. A comparison of flame evolution features is made depending on the initiation mechanism: a point ignition source or continuous heat supply from a heated region on the reactor wall. It is shown that with point ignition, the completeness of hydrogen combustion is significantly lower than with heat supply from the wall. It is also found that, despite the low chemical activity of ultra-lean hydrogen-air mixtures, the combustion process has a positive balance between the energy release during chemical reactions and the heat supplied to the reactor from the heated wall.

About the authors

I. S. Yakovenko

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru
Moscow, Russia

A. D. Kiverin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru
Moscow, Russia

K. S. Melnikova

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: yakovenko.ivan@bk.ru
Moscow, Russia

References

  1. Makhviladze G.M., Yakush S.E. // Proc. Comb. Inst. 2002. V. 29. P. 195. https://doi.org/10.1016/S1540-7489(02)80028-1
  2. Ciccarelli G., Dorofeev S. // Prog. Energy Combust. Sci. 2008. V. 34(4). P. 499.
  3. Lovachev L.A. // Combust. Sci. Technol. 1978. V. 18. P. 153. https://doi.org/10.1080/00102207808946847
  4. Ronney P.D. // Combust. and Flame. 1990. V. 82. P. 1. https://doi.org/10.1016/0010-2180(90)90074-2
  5. Shoshin Y., van Oijen J., Sepman A., de Goey L. // Proc. Comb. Inst. 2011. V. 33. P. 1211. https://doi.org/10.1016/j.proci.2010.06.030
  6. Coward H.F., Jones G.W. Limits of flammability of gases and vapors. Bulletin 503, US Bureau of Mines, 1952
  7. Levy A. // Proc. R. Soc. A. 1965. V. 283. P. 134. https://doi.org/10.1098/rspa.1965.0011
  8. Babkin V.S., V’yun A.V. // Combust. Explos. Shock Waves (Engl. Transl.) 1976. V. 12. P. 196. https://doi.org/10.1007/BF00744886
  9. Babkin V.S., Zamashchikov V.V., Badalyan A.M. et al. // Combust., Explos. Shock Waves (Engl. Transl.) 1982. V. 18. P. 164. https://doi.org/10.1007/BF00789613
  10. Volodin V.V., Golub V.V., Kiverin A.D. et. al. // Combust. Sci. Technol. 2020. V. 193. № 2. P. 225. https://doi.org/10.1080/00102202.2020.1748606
  11. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. P. 21. https://doi.org/10.3390/fluids6010021
  12. Carmel M.K., Experimental results pertaining to the performance of thermal igniters / NUREG/CR-5079; SAND-87-3139. Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology; Sandia National Labs., Albuquerque, NM, USA, 1989.
  13. Yakovenko I., Melnikova K., Kiverin A. // Acta Astronaut. 2024. V. 225. P. 218. https://doi.org/10.1016/j.actaastro.2024.09.013
  14. Kuo K. Principles of combustion. 2nd ed. Hoboken, New Jersey: Wiley-Inter- science; 2005. ISBN 0-471-04689-2.
  15. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. (U. S.). 1978. V. 83. Issue 3. P. 297.
  16. McGrattan K., McDermott R., Hostikka S., et.al. Fire Dynamics Simulator Technical Reference Guide V. 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1, U.S. Department of Commerce, National Institute of Standards and Technology. Gaithersburg, MD, 2019. https://doi.org/10.6028/NIST.SP.1018.
  17. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  18. Yakovenko I., Kiverin A. // Fire. 2023. V. 6. P. 23. https://doi.org/10.3390/fire6060239
  19. Bykov V., Kiverin A., Koksharov A., Yakovenko I. // Comput. Fluids. 2019. V. 194. P. 104310.
  20. Keromnes A., Metcalfe W.K., Heufer K.A., et.al. // Combust. and Flame. 2013. V. 160. № 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  21. Lovachev L.A. // Ibid. 1976. V. 27. P. 125. https://doi.org/10.1016/0010-2180(76)90012-2
  22. Buckmaster J. // Combust. Sci. Technol. 1992. V. 84. P. 163. https://doi.org/10.1080/00102209208951851
  23. Tereza A.M., Agafonov G.L., Anderzhanov E. K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 974. https://doi.org/10.1134/S1990793123040309
  24. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 1294. https://doi.org/10.1134/S1990793123060246
  25. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P.965. https://doi.org/10.1134/S1990793124700416
  26. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 425. https://doi.org/10.1134/S1990793123020173

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).