Динамика и энергетика горения ультрабедных смесей водорода с воздухом в ограниченном объеме

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе на основе детального численного анализа исследована динамика горения внутри ограниченного объема, заполненного предварительно перемешанными водородно-воздушными смесями, близкими по составу к нижнему концентрационному пределу горения. Проведено сравнение особенностей развития горения в зависимости от механизма его инициирования: от точечного источника или путем непрерывного подвода тепла от нагретой области на стенке реактора. Показано, что при точечном воспламенении полнота сгорания водорода существенно ниже, чем при непрерывном подводе тепла от стенки. Также получено, что, несмотря на малую химическую активность ультрабедных смесей водорода с воздухом, процесс горения имеет положительный баланс между энерговыделением в ходе химических реакций и теплотой, подводимой в реактор от нагретой стенки.

Об авторах

И. С. Яковенко

Объединенный институт высоких температур Российской академии наук

Email: yakovenko.ivan@bk.ru
Москва, Россия

А. Д. Киверин

Объединенный институт высоких температур Российской академии наук

Email: yakovenko.ivan@bk.ru
Москва, Россия

К. С. Мельникова

Объединенный институт высоких температур Российской академии наук

Автор, ответственный за переписку.
Email: yakovenko.ivan@bk.ru
Москва, Россия

Список литературы

  1. Makhviladze G. M., Yakush S. E. // Proc. Comb. Inst. 2002. V. 29. P. 195. https://doi.org/10.1016/S1540-7489(02)80028-1
  2. Ciccarelli G., Dorofeev S. // Prog. Energy Combust. Sci. 2008. V. 34(4). P. 499.
  3. Lovachev L.A. // Combust. Sci. Technol. 1978. V. 18. P. 153. https://doi.org/10.1080/00102207808946847
  4. Ronney P. D. // Combust. and Flame. 1990. V. 82. P. 1. https://doi.org/10.1016/0010-2180(90)90074-2
  5. Shoshin Y., van Oijen J., Sepman A., de Goey L. // Proc. Comb. Inst. 2011. V. 33. P. 1211. https://doi.org/10.1016/j.proci.2010.06.030
  6. Coward H.F., Jones G.W. Limits of flammability of gases and vapors. Bulletin 503, US Bureau of Mines, 1952
  7. Levy A. // Proc. R. Soc. A. 1965. V. 283. P. 134. https://doi.org/10.1098/rspa.1965.0011
  8. Babkin V.S., V’yun A.V. // Combust., Explos. Shock Waves. 1976. V. 12. P. 196. https://doi.org/10.1007/BF00744886
  9. Babkin V.S., Zamashchikov V.V., Badalyan A.M. et. al. // Combust. Explos. Shock Waves. 1982. V. 18. P. 164. https://doi.org/10.1007/BF00789613
  10. Volodin V.V., Golub V.V., Kiverin A.D. et al. // Combust. Sci. Technol. 2020. V. 193. № 2. P. 225. https://doi.org/10.1080/00102202.2020.1748606
  11. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. P. 21. https://doi.org/10.3390/fluids6010021
  12. Carmel M.K. Experimental results pertaining to the performance of thermal igniters / NUREG/CR-5079; SAND-87-3139. Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology; Sandia National Labs., Albuquerque, NM, USA, 1989.
  13. Yakovenko I., Melnikova K., Kiverin A. // Acta Astronaut. 2024. V. 225. P. 218. https://doi.org/10.1016/j.actaastro.2024.09.013
  14. Kuo K . Principles of combustion. 2nd ed. Hoboken. New Jersey: Wiley InterScience; 2005. ISBN 0-471-04689-2.
  15. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. 1978. V. 83. Issue 3. P. 297.
  16. McGrattan K., McDermott R., Hostikka S. et al. Fire Dynamics Simulator Technical Reference Guide V. 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1. U.S. Department of Commerce, National Institute of Standards and Technology. Gaithersburg, MD, 2019. https://doi.org/10.6028/NIST.SP.1018
  17. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  18. Yakovenko I., Kiverin A. // Fire. 2023. V. 6. P. 23. https://doi.org/10.3390/fire6060239
  19. Bykov V., Kiverin A., Koksharov A., Yakovenko I. // Comput. Fluids. 2019. V. 194. P. 104310.
  20. Keromnes A., Metcalfe W.K., Heufer K.A. et al. // Combust. and Flame. 2013. V. 160. № 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  21. Lovachev L.A. // Ibid. 1976. V. 27. P. 125. https://doi.org/10.1016/0010-2180(76)90012-2
  22. Buckmaster J. // Combust. Sci. Technol. 1992. V. 84. P. 163. https://doi.org/10.1080/00102209208951851
  23. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68.
  24. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48.
  25. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2024. Т. 43. № 7. С.73.
  26. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 3. С. 70.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».