Estimation of the Exothermic Reaction Rates for Nonideal Detonation of Triple Nitromethane/Ammonium Perchlorate/Aluminum Mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nonideal detonation of ternary mixtures of nitromethane (NM) and ammonium perchlorate (AP) with a large excess of aluminum (Al) is numerically modelled. A theoretical model developed earlier, in which the exothermic transformation of the mixture proceeds in three stages, including the decomposition of NM and AP, as well as the diffusion combustion of Al, is used. The calculation results are in close agreement with the experimental data on the detonation velocity recorded in steel tubes with a diameter of 18 mm, varying in a wide range of the NM content and Al/AP ratio in the mixtures. The values of the coefficients of the conversion rates of NM and AP, which are used in modeling the detonation of triple mixtures, are determined from the closest agreement of the calculations with the experiments on the charge diameter effect on the detonation velocity of a mixture of NM with 54% AP. The pressure exponents were set equal to 1. When changing the ratio of components, the calculations carried out with the same conversion rate coefficients closely agree with the experimental data. This is the reason why the selected values are used to calculate the detonation of triple mixtures. The low conversion rate of AP in comparison with NM leads to the length of the detonation wave reaction zone increasing up to 10 mm. The share of burnt AP is slightly less than half in mixtures with an Al/AP ratio of 1 : 1, and slightly more than one-third with an Al/AP ratio of 2 : 1.

About the authors

B. S. Ermolaev

Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: boris.ermolaev44@mail.ru
Moscow, Russia

P. V. Komissarov

Semenov Institute of Chemical Physics, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: boris.ermolaev44@mail.ru
Moscow, Russia; Moscow, Russia

S. S. Basakina

Semenov Institute of Chemical Physics, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: boris.ermolaev44@mail.ru
Moscow, Russia; Moscow, Russia

V. V. Lavrov

Federal Research Center of Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: boris.ermolaev44@mail.ru
Chernogolovka, Russia

References

  1. Anderson E. Tactical Missile Warheads / Ed. Corleone J. USA: AIAA, 1993. P. 81–163.
  2. Baudin G., Lefrancois A., Bergues D. et al. // Proc. 11th Intern Sympos on Detonation. Arlington, US: ONR_33300_5, 1998. P. 989.
  3. Kato Y., Murata K // EUROPYRO 2007 – 34th IPS. V. 2. Broune, France: AFPVRO, 2007. P. 957.
  4. Keicher T., Happ A. // Propellants, Explosives, Pyrotechnics. 1999. № 24. P. 140.
  5. Leiper G.A., Cooper J. // Proc. 9th Intern. Sympos. on Detonation. V. 1. Portland, US: CNR-113291-7, 1989. P. 197.
  6. Leiper G.A., Cooper J. // Proc. 10th Intern. Sympos. on Detonation. Boston: ONR 33395-12, 1993. P. 267.
  7. Физика взрыва / Под ред. Орленко Л.П. V. 1. М.: Физматгиз, 2004.
  8. Ермолаев Б.С., Комиссаров П.В., Соколов Г.Н., Борисов А.А. // Хим. физика. 2012. Т. 31. № 9. С. 55.
  9. Pagnanini L. Doctorate These. France: Poitiers University–LCD–ENSMA. 2008.
  10. Andersen W.H., Pesante R.E. // Proc. 8th Symp. (Intern.) on Combustion. Baltimore, US: Williams Wilkins Co., 1961. P. 705.
  11. Price D., Clairmont A.R., Jr., Erkman J.O. // Combust. and Flame. 1973. V. 20. Issue 3. P. 389.
  12. Ermolaev B.S., Khasainov B.A., Presles H.N. // Proc. 34th Intern. Pyrotech. Seminar “EUROPYRO 2007”. V. 1. Broune, France: AFPYRO, 2007. P. 323.
  13. Ермолаев Б.С., Сулимов А.А. Конвективное горение и низкоскоростная детонация пористых энергетических материалов. М.: Торус Пресс, 2017.
  14. Комиссаров П.В., Соколов Г.Н., Ермолаев Б.С., Борисов А.А. // Хим. физика. 2011. Т. 30. № 6. С. 61.
  15. Комиссаров П.В., Сулимов А.А., Ермолаев Б.С. и др. // Хим. физ. 2020. Т. 39. № 8. С. 21.
  16. Ермолаев Б.С., Шевченко А.А., Долгобородов А.Ю., Маклашова И.В. // Хим. физ. 2019. Т. 38. № 2. С. 52.
  17. Беляев А.Ф., Боболев В.К., Коротков А.И. и др. Переход горения конденсированных систем во взрыв. М.: Наука, 1973.
  18. Имховик Н.А., Соловьев В.С. // Вестн. МГТУ. Сер. “Машиностроение”. 1994. № 3. С. 50.
  19. Khasainov B.A., Ermollaev B.S., Presles H.-N., Vidal P. // Shock Waves. 1995. V. 6. P. 89.
  20. Зельдович Я.Б. Теория детонации. М.: Изд. ТТЛ, 1955.
  21. Mader Ch.L. Numerical modeling of detonations. Berkley–LA–London: Univ. California Press, 1979.
  22. Rice S.F., Foltz F. // Combust. and Flame. 1991. V. 87. P. 109.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (45KB)
3.

Download (51KB)
4.

Download (31KB)
5.

Download (38KB)
6.

Download (31KB)

Copyright (c) 2023 Б.С. Ермолаев, П.В. Комиссаров, С.С. Басакина, В.В. Лавров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies