Changes in NDVI, black carbon and soil moisture in the “Burtinskaya Steppe” of the Orenburg nature reserve according to satellite and ground data in 2000–2022

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the dynamics of changes and trends in climatic conditions, the vegetation index NDVI, the humidity of the upper soil layer and the content of black carbon in the atmosphere in the conditions of steppe fires by ground and satellite measurements for the period 2000–2022 are traced for the “Burtinskaya Steppe” in the Orenburg region. The negative trend in the values of the Selyaninov hydrothermal coefficient (HTC) indicates a tendency to weaken the moisture supply of the territory, which contributes to the occurrence of steppe fires. The consequence of climatic trends is a positive trend in the values of black carbon in the atmosphere of the studied area, as well as a tendency to decrease the biomass and humidity of the upper soil layer. Absolute interannual values were marked in 2010: minimum values of NDVI, soil moisture and maximum values of black carbon.

Sobre autores

N. Rodionova

Institute of Radioengineering and Electronics, RAS

Autor responsável pela correspondência
Email: rnv1948123@yandex.ru
Rússia, Fryazino, Moscow Region

Bibliografia

  1. Bakiev A.G., Balkin A.S., Barbazyuk E.V., Galaktionova L.V., Gorelov R.A., Dusaeva G.X., Kalmy`kova O.G. et al. // Opy`t organizacii monitoringovy`x issledovanij izmenenij stepny`x e`kosistem posle pozhara: podxody` i metody`. Orenburg: OOO “Tipografiya “Yuzhny`j Ural”. 2017. 108 p. (In Russian).
  2. Bujvolov Yu.A, By`kova E.P., Gavrilenko V.S. et al. Analiz otechestvennogo i zarubezhnogo opy`ta upravleniya pozharami v stepyax i svyazanny`x s nimi e`kosistemax, v chastnosti, v usloviyax OOPT / [E`lektr. resurs] (URL: http://www.biodiversity.ru/programs/steppe/docs/pozhar/fires-in-steppe_review21012012.pdf). (In Russian).
  3. Ek M.B., Mitchell K.E., Lin Y. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model // J. Geophys. Res. Atmos. 2003.108. 8851. doi: 10.1029/2002JD00 3296.
  4. Funk C., Peterson P., Landsfel, M., Pedreros D., Verdin J., Shukla S., Michaelsen J. The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes // Sci. data. 2015. 2. 150066.
  5. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C. A., Darmenov A., Bosilovich M. G., Reichle R., Wargan K. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J. Clim. 2017.30 (14). P. 5419–5454.
  6. McNally A., Arsenault K., Kumar S. et al. A land data assimilation system for sub-Saharan Africa food and water security applications // Scientific Data. 2017. 4. 170012. doi: 10.1038/sdata.2017.12.
  7. Pavlejchik V.M. Mnogoletnyaya dinamika prirodnyh pozharov v stepnyh regionah (na primere Orenburgskoj oblasti) // Vestnik Orenburgskogo Gosudarstvennogo Universiteta. 2016. № 6 (194). P. 74–80. (In Russian).
  8. Selyaninov G.T. O sel'skohozyajstvennoj ocenke klimata [On agricultural climate assessment] // Trudy po sel'skohozyajstvennoj meteorologii. 1928. Vyp. 20. P. 165–177. (In Russian).
  9. Selyaninov G.T. Principy agroklimaticheskogo rajonirovaniya SSSR [Principles of agro-climatic zoning of the USSR] // Voprosy agroklimaticheskogo rajonirovaniya SSSR. M.: MSKH SSSR. 1958. P. 7–14. (In Russian).

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies