Using Shuffled Frog-Leaping Algorithm for Feature Selection and Fuzzy Classifier Design


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper considers a new approach for designing fuzzy rule-based classifiers. To optimize the parameters of classifiers, a continuous shuffled frog-leaping algorithm is applied. On a set of constructed classifiers, the optimal classifier is selected in terms of the accuracy and the number of features used, using the statistical Akaike informational criterion. The efficiency of the proposed approach is tested on 15 KEEL data sets. The results are statistically compared with the results of similar algorithms. The new approach to designing fuzzy classifiers proposed in this article makes it possible to reduce the number of rules and attributes, thereby increasing the interpretability of classification results.

作者简介

I. Hodashinsky

Tomsk State University of Control Systems and Radioelectronics

编辑信件的主要联系方式.
Email: hodashn@rambler.ru
俄罗斯联邦, Tomsk, 634050

M. Bardamova

Tomsk State University of Control Systems and Radioelectronics

编辑信件的主要联系方式.
Email: 722bmb@gmail.com
俄罗斯联邦, Tomsk, 634050

V. Kovalev

Tomsk State University of Control Systems and Radioelectronics

编辑信件的主要联系方式.
Email: vitaly_979@mail.ru
俄罗斯联邦, Tomsk, 634050

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019