Using Shuffled Frog-Leaping Algorithm for Feature Selection and Fuzzy Classifier Design
- Autores: Hodashinsky I.A.1, Bardamova M.B.1, Kovalev V.S.1
-
Afiliações:
- Tomsk State University of Control Systems and Radioelectronics
- Edição: Volume 46, Nº 6 (2019)
- Páginas: 381-387
- Seção: Article
- URL: https://journals.rcsi.science/0147-6882/article/view/175544
- DOI: https://doi.org/10.3103/S0147688219060030
- ID: 175544
Citar
Resumo
This paper considers a new approach for designing fuzzy rule-based classifiers. To optimize the parameters of classifiers, a continuous shuffled frog-leaping algorithm is applied. On a set of constructed classifiers, the optimal classifier is selected in terms of the accuracy and the number of features used, using the statistical Akaike informational criterion. The efficiency of the proposed approach is tested on 15 KEEL data sets. The results are statistically compared with the results of similar algorithms. The new approach to designing fuzzy classifiers proposed in this article makes it possible to reduce the number of rules and attributes, thereby increasing the interpretability of classification results.
Sobre autores
I. Hodashinsky
Tomsk State University of Control Systems and Radioelectronics
Autor responsável pela correspondência
Email: hodashn@rambler.ru
Rússia, Tomsk, 634050
M. Bardamova
Tomsk State University of Control Systems and Radioelectronics
Autor responsável pela correspondência
Email: 722bmb@gmail.com
Rússia, Tomsk, 634050
V. Kovalev
Tomsk State University of Control Systems and Radioelectronics
Autor responsável pela correspondência
Email: vitaly_979@mail.ru
Rússia, Tomsk, 634050
Arquivos suplementares
