Using Shuffled Frog-Leaping Algorithm for Feature Selection and Fuzzy Classifier Design


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper considers a new approach for designing fuzzy rule-based classifiers. To optimize the parameters of classifiers, a continuous shuffled frog-leaping algorithm is applied. On a set of constructed classifiers, the optimal classifier is selected in terms of the accuracy and the number of features used, using the statistical Akaike informational criterion. The efficiency of the proposed approach is tested on 15 KEEL data sets. The results are statistically compared with the results of similar algorithms. The new approach to designing fuzzy classifiers proposed in this article makes it possible to reduce the number of rules and attributes, thereby increasing the interpretability of classification results.

Sobre autores

I. Hodashinsky

Tomsk State University of Control Systems and Radioelectronics

Autor responsável pela correspondência
Email: hodashn@rambler.ru
Rússia, Tomsk, 634050

M. Bardamova

Tomsk State University of Control Systems and Radioelectronics

Autor responsável pela correspondência
Email: 722bmb@gmail.com
Rússia, Tomsk, 634050

V. Kovalev

Tomsk State University of Control Systems and Radioelectronics

Autor responsável pela correspondência
Email: vitaly_979@mail.ru
Rússia, Tomsk, 634050

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019